2018

Baraminological analysis of Devonian and Carboniferous tetrapodomorphs

DOI: https://doi.org/10.15385/jpicc.2018.8.1.36

Paul A. Garner
Biblical Creation Trust

Jonathan Asher
Biblical Creation Trust

Follow this and additional works at: http://digitalcommons.cedarville.edu/icc_proceedings
Browse the contents of this volume of The Proceedings of the International Conference on Creationism.

Recommended Citation
BARAMINOLOGICAL ANALYSIS OF DEVONIAN AND CARBONIFEROUS TETRAPODOMORPHS

Paul A. Garner, Biblical Creation Trust, P.O. Box 325, Ely, CB7 5YH United Kingdom paul@biblicalcreationtrust.org
Jonathan Asher, Independent scholar

ABSTRACT
According to evolutionary theory, the origin of tetrapods (or limbed vertebrates) from a fish-like ancestor during the Devonian Period was one of the major events in the history of life. Devonian sediments have yielded several families of tetrapod-like fishes, including the elpistostegids which range from the Givetian to Frasnian of the Middle to Upper Devonian and are regarded as close to the evolutionary ancestry of tetrapods. Two of the best-known ‘early’ tetrapods are Ichthyostega and Acanthostega, first described from fossil material discovered in the Famennian (uppermost Upper Devonian) sediments of East Greenland. These taxa (and others subsequently described) display mosaic combinations of fish-like and tetrapod-like characters, along with some unique traits (such as polydactyly) not found in more ‘derived’ tetrapods. Creationists have claimed that these organisms are not evolutionary intermediates, but were rather the inhabitants of aquatic environments associated with a pre-Flood floating forest biome, with morphologically intermediate traits that equipped them for life in an environment that was itself intermediate between the sea and the land. This paper evaluates the baraminic status of a range of Devonian and Carboniferous fishes and tetrapods using the techniques of statistical baraminology. Baraminic distance correlation (BDC) and three-dimensional multidimensional scaling (MDS) are applied to six previously published character-taxon matrices. The results reveal little evidence of continuity, and significant evidence of discontinuity, between the elpistostegids and tetrapods such as Ichthyostega and Acanthostega, consistent with the creationist claim of separate ancestry. However, further work will be required to elucidate the baraminic relationships within these presumably apobaraminic groups.

KEY WORDS
Tetrapods, tetrapodomorphs, Devonian, Carboniferous, baraminic distance, multidimensional scaling, discontinuity

INTRODUCTION
According to evolutionary theory, the origin of tetrapods from a fish-like ancestor during the Devonian Period (conventionally 419.2-358.9 million years ago) was one of the major events in the history of life (Clack 2012). In this paper, we will use the term ‘tetrapod’ to refer to a vertebrate with limbs rather than paired fins. The more inclusive term ‘tetrapodomorph’ is used to refer to tetrapodomorph fishes, including the elpistostegids which range from the Givetian to Frasnian of the Middle to Upper Devonian and are regarded as close to the evolutionary ancestry of tetrapods (Ahlberg and Johnson 1998, Table 1). Elpistostege from the Frasnian Escuminac Formation of Quebec, Canada, was originally described as a tetrapod based on a partial skull roof (Westoll 1938) and only recognized as a fish when more complete material was discovered half a century later (Schultze andArsenault 1985). Panderichthys, from the Frasnian Gauja Formation of Latvia and Estonia, is much better known. Complete specimens reveal that Panderichthys has paired fins, a set of opercular bones and other fish-like features of the braincase and lower jaw (Ahlberg and Clack 1998; Ahlberg et al. 1996; Boisvert 2005; Boisvert 2009; Boisvert et al. 2008). However, in other respects its appearance is quite tetrapod-like, with a dorsoventrally flattened body and skull, dorsally placed orbits with supraorbital ridges, a large spiracular opening, frontal bones in the skull roof and an elongated snout with marginal nares (Vorobyeva 1977; Vorobyeva 1980; Vorobyeva 1992; Vorobyeva and Kuznetsov 1992; Vorobyeva and Schulz 1991).

Even more tetrapod-like is Tiktaalik from the Frasnian Fram Formation of Nunavut Territory, Canada. Tiktaalik was described from multiple, articulated specimens preserved in three dimensions, all from a single site on southern Ellesmere Island (Deschler et al. 2006; Downs et al. 2008; Shubin et al. 2006; Shubin et al. 2014). Like Panderichthys, Tiktaalik has paired fins and a dorsal surface covered with overlapping rhombic scales. However, the snout is even more elongated, the spine is even larger and there is no bony opercular cover. Furthermore, Tiktaalik is distinguished from other tetrapodomorph fishes by possession of imbricate ribs, and a pectoral girdle with enlarged scapular and coracoid elements and highly mobile elbow-like and wrist-like joints. The head is also detached from the shoulder girdle, allowing flexure in the neck region. These features would have allowed the animal to support itself on a substrate using its pectoral fins in a limb-like manner.

The earliest tetrapods to appear in the fossil record constitute a paraphyletic grade (i.e. not a clade) and may be referred to as ichthyostegalians (Table 2). Two of the best-known are Ichthyostega and Acanthostega, first described from fossil material discovered in the Famennian sediments of East Greenland (Jarvik 1952; Jarvik 1965; Jarvik 1996; Säve-Söderbergh 1932). Although the anatomy of Ichthyostega is known in considerable detail, no single specimen possesses a complete vertebral column and so the relative proportions of the body, including those of the head and limb girdles, have been reconstructed from partial, overlapping specimens (Ahlberg et al. 2005a). Ichthyostega is about one metre
Neoceratodus was a Devonian tetrapod from the Fram Formation in Greenland, known for its distinctive paddle-like limbs. Fossil specimens from the Fram Formation are part of the Escuminac fauna, which also includes Perittodus from the Gauja Formation in Estonia. These ichthyostegid material, including a well-preserved and articulated hind limb, collected by an expedition to East Greenland in 1987, revealed that Ichthyostega was polydactylous, with seven digits on the hind limb (Coates and Clack 1990). The pectoral and pelvic girdles are large and the hind limb paddle-like, with flattened bones and an inflexible ankle (Pierce et al. 2012). Fish-like characteristics of Ichthyostega include a lateral line system, a tail with bony fin rays and an ear region specialized for underwater hearing (Clack et al. 2003).

Acanthostega is also much more completely known as a result of material collected by the 1987 expedition, including the first postcranial remains (Bendix-Almgren et al. 1988; Bendix-Almgren et al. 1990; Clack 1988). Several articulated specimens in a mass-death assemblage appear to represent juvenile Acanthostega with limbs displaying varying degrees of ossification in an ontogenetic series (Sanchez et al. 2016). The remarkable preservation also means that some delicate structures, not often preserved in fossil tetrapods, are known in Acanthostega. The braincase and ear region are tetrapod-like (Clack 1989; Clack and Finney 2005; Lombard and Bolt 1995). The differentiation of the trunk into thoracic, lumbar, postsacral and caudal regions would have permitted dorsoventral flexion of the body, and a distinctive form of locomotion on land (Ahlberg et al. 2005). New ichthyostegid material, including a well-preserved and articulated hind limb, collected by an expedition to East Greenland in 1987, revealed that Ichthyostega was polydactylous, with seven digits on the hind limb (Coates and Clack 1990). The pectoral and pelvic girdles are large and the hind limb paddle-like, with flattened bones and an inflexible ankle (Pierce et al. 2012). Fish-like characteristics of Ichthyostega include a lateral line system, a tail with bony fin rays and an ear region specialized for underwater hearing (Clack et al. 2003).

Acanthostega was polydactylous, with seven digits on the hind limb (Coates and Clack 1990). The pectoral and pelvic girdles are large and the hind limb paddle-like, with flattened bones and an inflexible ankle (Pierce et al. 2012). Fish-like characteristics of Ichthyostega include a lateral line system, a tail with bony fin rays and an ear region specialized for underwater hearing (Clack et al. 2003).

In addition to body fossils, putative trackways of tetrapods have been documented from a number of Devonian localities in Australia, South America and Europe (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3). The most securely identified are the Genoa River trackways in New South Wales, Australia (Warren and Wakefield 1972) and the Valentia Island trackways in southwestern Ireland (Clack 1997; Lucas 2015; Table 3).
Table 2. Named genera of Devonian tetrapods (‘ichthyostegalians’). Most are represented by single specimens; *Ichthyostega* and *Acanthostega* represent stratigraphic ranges. Frasnian and Famennian are subdivisions of the Upper Devonian. Fm = Formation. Gp = Group. After Olive et al. (2016).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Stratigraphic unit</th>
<th>Age</th>
<th>Location</th>
<th>Material</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ichthyostega</td>
<td>Aina Dal Fm</td>
<td>Upper Famennian</td>
<td>East Greenland</td>
<td>Skulls, skeletal elements, some articulated</td>
<td>Ahlberg et al. (2005a); Blom (2005); Blom et al. (2005); Blom et al. (2007); Clack et al. (2003); Clack et al. (2012); Coates and Clack (1990); Jarvik (1952); Jarvik (1965); Jarvik (1996); Pierce et al. (2012); Pierce et al. (2013); Save-Söderbergh (1932)</td>
</tr>
<tr>
<td></td>
<td>Britta Dal Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthostega</td>
<td>Britta Dal Fm</td>
<td>Upper Famennian</td>
<td>East Greenland</td>
<td>Skulls, articulated skeletons</td>
<td>Ahlberg and Clack (1998); Blom et al. (2005); Blom et al. (2007); Clack (1988); Clack (1989); Clack (1994a); Clack (1994b); Clack (1998); Clack (2002b); Coates and Clack (1990); Coates and Clack (1991); Jarvik (1952); Porro et al. (2015); Sanchez et al. (2016); Save-Söderbergh (1932)</td>
</tr>
<tr>
<td>Tulerpeton</td>
<td>Khovanshchina Beds</td>
<td>Upper Famennian</td>
<td>Tula Region, Russia</td>
<td>Fore and hind limbs, partial pectoral and pelvic girdles, skull fragments</td>
<td>Lebedev (1984); Lebedev (1985); Lebedev and Clack (1993); Lebedev and Coates (1995); Mondéjar-Fernández et al. (2014)</td>
</tr>
<tr>
<td>Ventastega</td>
<td>Ketleri Fm</td>
<td>Upper Famennian</td>
<td>Latvia</td>
<td>Skull fragments, girdle fragments</td>
<td>Ahlberg and Lukševičs (1998); Ahlberg et al. (1994); Ahlberg et al. (2008); Esin et al. (2000); Lukševičs and Zupiņš (2003); Lukševičs and Zupiņš (2004); Witzmann (2010)</td>
</tr>
<tr>
<td>Hynerpeton</td>
<td>Catskill Fm</td>
<td>Upper Famennian</td>
<td>Pennsylvania, USA</td>
<td>Pectoral girdle, skull fragments</td>
<td>Daeschler (2000); Daeschler et al. (1994); Daeschler et al. (2009)</td>
</tr>
<tr>
<td>Densignathus</td>
<td>Catskill Fm</td>
<td>Upper Famennian</td>
<td>Pennsylvania, USA</td>
<td>Lower jaw</td>
<td>Daeschler (2000); Daeschler et al. (2009)</td>
</tr>
<tr>
<td>Jakubsonia</td>
<td>Zadonskian Beds</td>
<td>Lower Famennian</td>
<td>Oryol Region, Russia</td>
<td>Partial skull roof, partial lower jaw, cleithrum, partial femur</td>
<td>Esin et al. (2000); Lebedev (2004)</td>
</tr>
<tr>
<td>Ymeria</td>
<td>Talus specimen, Celsius Bjerg Gp</td>
<td>Famennian</td>
<td>North-east Greenland</td>
<td>Lower jaws, maxillae, premaxillae, partial palate and shoulder girdle</td>
<td>Blom et al. (2007); Clack et al. (2012)</td>
</tr>
<tr>
<td>Metaxygnathus</td>
<td>Cloghnan Shale</td>
<td>Frasnian to Famennian</td>
<td>New South Wales, Australia</td>
<td>Lower jaw</td>
<td>Ahlberg and Clack (1998); Ahlberg et al. (1994); Campbell and Bell (1977); Young (1993); Young (1999); Young (2006)</td>
</tr>
<tr>
<td>Webererpeton</td>
<td>Smota Lovat’ Fm</td>
<td>Upper Frasnian</td>
<td>Leningrad Region, Russia</td>
<td>Lower jaw</td>
<td>Ahlberg (1991); Ahlberg (1995); Clément and Lebedev (2014)</td>
</tr>
<tr>
<td>Elginerpeton</td>
<td>Scat Craig Beds</td>
<td>Middle or Upper Frasnian</td>
<td>Scotland</td>
<td>Ilium, limb bones, skull and pectoral girdle fragments</td>
<td>Ahlberg (1991); Ahlberg (1995); Ahlberg (1998); Ahlberg and Clack (1998); Ahlberg et al. (2005b)</td>
</tr>
<tr>
<td>Sinostega</td>
<td>Zhongning Fm</td>
<td>Frasnian</td>
<td>Ningxia Hui, China</td>
<td>Incomplete left mandible</td>
<td>Zhu et al. (2002)</td>
</tr>
</tbody>
</table>
non-marine paleoenvironment (rather than the marginal marine setting originally inferred). Other Devonian trackways have been incorrectly ascribed to tetrapods or their stratigraphic age is uncertain (Table 3).

Wise (1995) defined a stratomorphic series as a sequence of species or higher taxa in the fossil record, where each taxon is a morphological intermediate between the taxa stratigraphically below and above it. In the case of the Devonian fish-tetrapod series, the ‘least derived’ elpistostegid Panderichthys appears in the Givetian (Ahlberg et al. 2000), the ‘most derived’ elpistostegids Elpistostege and Tiktaalik in the Frasnian (Ahlberg et al. 2000; Daeschler et al. 2006) and the ichthyostegians in the upper Frasnian (Ahlberg 1991, Ahlberg 1995; Ahlberg 1998). Despite some possibly conflicting data, such as the Zachelmeic trackways in the Middle Devonian and the poorly-known taxon Livoniana, which seems ‘more derived’ than Panderichthys but is contemporary with it (Ahlberg et al. 2000), the agreement between phylogeny (inferred from morphology) and stratigraphy seems fairly robust and the fish-tetrapod series thus provides a good example of a stratomorphic series sensu Wise (1995).

From an evolutionary perspective, this stratomorphic series is interpreted as an evolutionary sequence documenting the step-wise acquisition of key tetrapod characters during a major morphological transition (e.g. Blieck et al. 2010; Clack 2006; Clack 2009; Clack 2012). However, Garner (2003) highlighted a number of difficulties with the evolutionary interpretation and concluded that the Devonian tetrapodomorphs were morphological intermediates,
though not evolutionary intermediates. Wise (2003) proposed a creationist interpretation, in which the Devonian tetrapodomorphs were inhabitants of aquatic environments associated with a pre-Flood floating forest biome, and equipped with morphologically intermediate traits suitable for life in an ecosystem that was itself intermediate between the sea and the land.

Furthermore, Garner (2003) claimed that Devonian tetrapods such as Ichthyostega and Acanthostega remained separated from elpistostegids such as Panderichthys by a significant morphological (and by inference, phylogenetic) discontinuity. However, this claim has not until now been tested with a statistical analysis. Here, we examine six character matrices from Ahlberg and Clack (1998), Daeschler et al. (2006), Ruta (2011), Swartz (2012), Sookias et al. (2014) and Clack et al. (2016) using baraminic distance correlation (BDC) and three-dimensional MDS (multidimensional scaling). These methods should allow us to detect any morphological discontinuities that may exist between these organisms, and to draw some conclusions regarding their baraminic status from a creationist perspective.

METHODS

BDISTMDS version 2.0 was used to carry out a BDC analysis on the datasets (Wood 2003a). Baraminic distance is the percentage of character states that two organisms have in common (Robinson and Cavanaugh 1998). The BDC correlates the distances between taxa using linear regression to derive a statistical significance of the similarity of two organisms. Ideally, baraminologists hope to identify well-defined groups of taxa that are united by significant, positive correlation (interpreted as evidence of continuity) and separated from the outgroup taxa by significant, negative correlation (interpreted as evidence of discontinuity). For baraminic distance calculations, characters are omitted that do not meet a minimum criterion of character relevance (the percentage of taxa for which a character state is known). In the present analysis, we used a character relevance cutoff of 75%, and bootstrap values were obtained from 100 pseudo-replicates of each character set (see Wood 2003b). Our baraminic distance correlations were supplemented with the application of classical MDS, as described by Wood (2005a). MDS converts a matrix of Euclidean distances between objects into a set of k-dimensional coordinates of the objects, where k is a predetermined dimensionality. One major advantage of MDS is the introduction of the concept of stress, a measure of how the observed baraminic distances are distorted by the reduction in dimensionality. The smaller the stress, the better the fit between the baraminic distances and the distances inferred from the classical MDS.

Ahlberg and Clack’s (1998) matrix consisted of 26 taxa scored for 50 mandibular characters. The taxa included the elpistostegid Panderichthys, seven Devonian tetrapods and a sampling of other Carboniferous to Permian tetrapods. We used a modified version of the matrix with character states for the Carboniferous taxon Whatcheeria rescored by Lombard and Bolt (2006). We performed two calculations. The first was on the whole dataset. After filtering at 0.75 character relevance cutoff, we used 41 characters to calculate baraminic distances. The second was on a subset of 11 taxa, 15 Carboniferous and Permian taxa were excluded in order to avoid spurious positive distance correlations caused by the inclusion of excessive outgroups (c.f. Wood 2005b). After filtering at 0.75 character relevance cutoff, we used 37 characters to calculate baraminic distances.

Daeschler et al.’s (2006) matrix consisted of 9 taxa scored for 114 cranial, mandibular and postcranial characters. Characters 1-61 were taken from Ahlberg and Johanson (1998) and characters 62-83 from Ahlberg et al. (2000). The taxa included three elpistostegids, two Devonian tetrapods and four Devonian sarcopterygian fishes belonging to other families. We analysed the full dataset of 9 taxa. After filtering at 0.75 character relevance cutoff, we used 86 characters to calculate baraminic distances. A sampling of cranial, mandibular and postcranial characters was retained after filtering.

Ruta’s (2011) matrix consisted of 44 taxa scored for 157 characters of the appendicular skeleton, including the pectoral and pelvic girdles and the paired appendages. The taxa included two elpistostegids, four Devonian tetrapods and a sampling of other Devonian to Permian tetrapods and fishes. Two taxa (Catskill hermesthes, Caerorhachis) were excluded from the analysis because too few character states were known. For our calculations, we excluded another 29 taxa and used a subset of 13 taxa. The excluded taxa were Devonian, Carboniferous and Permian forms representing multiple families. As with the Ahlberg and Clack (1998) dataset, this was to eliminate excessive outgroups. After filtering at 0.75 character relevance cutoff, we used 51 characters to calculate baraminic distances. A sampling of characters of the pectoral girdle and paired appendages was retained after filtering, but all the pelvic girdle characters were eliminated.

Swartz’s (2012) matrix consisted of 47 taxa scored for 204 cranial, mandibular and postcranial characters. Of the 204 characters, 197 were taken from Ahlberg and Johanson (1998), Ahlberg et al. (2008), Coates and Friedman (2010), Daeschler et al. (2006), Long et al. (2006) and Zhu and Ahlberg (2004), several of them with modifications. The taxa included three elpistostegids, four Devonian tetrapods and a sampling of other Devonian to Permian tetrapods and fishes. For our calculations, we excluded 37 taxa and used a subset of 10 taxa. The excluded taxa were Devonian, Carboniferous and Permian forms representing multiple families. As with the Ahlberg and Clack (1998) dataset, this was to eliminate excessive outgroups. After filtering at 0.75 character relevance cutoff, we used 101 characters to calculate baraminic distances. A sampling of cranial, mandibular and postcranial characters was retained after filtering.

Sookias et al.’s (2014) matrix consisted of 25 taxa scored for 115 cranial, mandibular and postcranial characters. The matrix was modified from Clack et al. (2012), which in turn was based on the matrix of Calijier et al. (2009). Calijier et al. (2009) modified the matrix of Ahlberg et al. (2008), deleting six characters to reduce redundancy and adding four humeral characters. The taxa included three elpistostegids, seven Devonian tetrapods and a sampling of other Devonian to Carboniferous tetrapods and fishes. For our calculations, we excluded 14 taxa and used a subset of 11 taxa. The excluded taxa were Devonian and Carboniferous forms representing multiple families. As with the Ahlberg and Clack (1998) dataset, this was to eliminate excessive outgroups. After filtering at 0.75 character relevance cutoff, we used 40
characters to calculate baraminic distances. Most characters of the lower jaw and lower jaw dentition were retained, but all but one character of the palatal dentition, and all the skull roof, braincase and postcranial characters were eliminated, including the new characters introduced by Callier et al. (2009).

Clack et al.’s (2016) matrix consisted of 45 taxa scored for 213 cranial, mandibular and postcranial characters. Characters were sourced from Ahlberg and Clack (1998), Clack (1998), Clack et al. (2012), Clack and Finney (2005), Klembara et al. (2014), Ruta and Clack (2006) and Ruta et al. (2002), several of them with modifications and with the addition of five new characters. The taxa included two elpistostegids, six Devonian tetrapods and a sampling of other Devonian to Carboniferous tetrapods and fishes. We performed our calculations on two subsets of taxa. In both cases, several Carboniferous and Permian taxa representing multiple families were removed in order to eliminate excessive outgroups. Our first analysis excluded 32 taxa and used a subset of 13 taxa, including two of the new Tournaisian tetrapods (Perittodus, Diploradus) described by Clack et al. (2016). A third (Ossirarus) had to be eliminated because it had too few characters in common with the other taxa. After filtering at 0.75 character relevance cutoff, we used 32 characters to calculate baraminic distances. All postcranial and upper dentition characters were eliminated after filtering, as were most of the palatal and general skull characters. Our second analysis excluded 36 taxa and used a subset of 9 taxa, and included only the Devonian tetrapods, the elpistostegids and Eusthenopteron. After filtering at 0.75 character relevance cutoff, we used 50 characters to calculate baraminic distances. All postcranial characters were eliminated after filtering, along with most of the palatal and general skull characters.

RESULTS
The baraminic distance correlation results for Ahlberg and Clack’s (1998) whole matrix are summarized in Figure 1. Two blocks of positive correlation are evident, one comprising the ‘more derived’ Carboniferous and Permian taxa and a second smaller one comprising the Devonian taxa plus one Lower Carboniferous taxon (Whatcheeria). Almost all members of the first group are negatively correlated with all members of the second group, with only three exceptions: Greererpeton, Megalocephalus and Crassigyrinus. Megalocephalus is negatively correlated with all but one member of the Devonian group. However, Greererpeton is negatively correlated with only four of the nine members of the Devonian group, and Crassigyrinus is negatively correlated with only one of the Devonian taxa. Moreover, Crassigyrinus is the only taxon that does not show positive correlations with all other members of its own group. Bootstrap values are generally good, ranging from 27% to 100% with a median value of 94%. The 3D MDS results indicate the same groupings (Figure 2), with an obvious cluster of Carboniferous and Permian taxa separated from a cluster of Devonian taxa. Devonian taxa include seven tetrapods plus one elpistostegid (Panderichthys). The Carboniferous and Permian taxa represent multiple families of tetrapods. The 3D stress was 0.133 with minimal stress of 0.121 at four dimensions.

We suspected that most of the Carboniferous and Permian taxa were so different from the Devonian taxa that they were obscuring any discontinuities among the Devonian taxa. We therefore removed most of the Carboniferous and Permian forms from the analysis and ran it again, with a subset of 11 taxa comprising the Devonian forms plus Whatcheeria, Greererpeton and Crassigyrinus. The baraminic distance correlation results for this subset of Ahlberg and Clack’s (1998) matrix are summarized in Figure 3. There are two blocks of taxa, one comprising the Devonian tetrapods plus Whatcheeria and another comprising Greererpeton + Crassigyrinus. Only one Devonian tetrapod (Obruchevichthys) is correlated negatively.
with another taxon, namely Crassigyrinus. Panderichthys is not positively correlated with any other taxon, although it is negatively correlated with both Crassigyrinus and Greererpeton. However, bootstrap values for all taxon-pair correlations are low, ranging from 46% to 84% with a median value of 60%; none reaches >90%. The 3D MDS results indicate the same groupings (Figure 4), with an obvious cluster of Devonian tetrapods + Whatcheeria separated from Greererpeton + Crassigyrinus. Panderichthys stands apart from both of these groupings. The 3D stress was 0.157 with minimal stress of 0.104 at four dimensions.

The baraminic distance correlation results for Daeschler’s (2006) matrix are summarized in Figure 5. There are three main clusters, comprising (1) the Devonian tetrapods (Ichthyostega + Acanthostega), (2) the elpistostegids (Panderichthys + Tiktaalik + Elpistostege), and (3) the other fishes (Glyptolepis + Megalichthys + Gooloogongia + Eusthenopteron). Each member of Group 1 is negatively correlated with each member of Group 3, although there are no negative correlations between members of Groups 1 and 2. One member of Group 2 (Tiktaalik) is negatively correlated with one member of Group 3 (Glyptolepis). Bootstrap values range from 47% to 100%, with a median value of 86.5%. The positive correlation between Glyptolepis and Gooloogongia has the lowest bootstrap value (47%); all others were 72% or above. The same groupings are evident in the 3D MDS results (Figure 6), with clear separation between the three clusters. The 3D stress was 0.071 with minimal stress of 0.049 at five dimensions.

The baraminic distance correlation results for Ruta’s (2011) matrix are summarized in Figure 7. Two clusters are evident, one comprising all the tetrapods (including the Devonian forms) and another comprising all the fishes (including the elpistostegids). The two clusters are separated by significant negative correlation. Bootstrap values range from 47% to 100%, but are generally good with a median value of 97%. The lowest bootstrap values are associated with the negative correlations between some fishes and tetrapods (e.g. 50% between Gogonasus and Hynerpeton; 53% between Panderichthys and Crassigyrinus) and the positive...
correlation between \textit{Acanthostega} and \textit{Tulerpeton} (47\%). In the 3D MDS results (Figure 8), there is also a clear separation between the two clusters, but perhaps also some indications of discontinuities within each cluster. For example, \textit{Tiktaalik} + \textit{Panderichthys} seem to be somewhat separated from \textit{Gogonasus} + \textit{Eusthenopteron}, and \textit{Marsdenichthys} is separated from all the other fishes. Likewise, \textit{Ichthyostega} + \textit{Acanthostega} + \textit{Hynerpeton} are slightly separated from the Carboniferous tetrapods + \textit{Tulerpeton} (which seem to form a tight 'sub-cluster'), and \textit{Ossinodus} is separated from all the other fishes. The 3D stress was 0.205 with minimal stress of 0.169 at two dimensions.

The baraminic distance correlation results for Swartz’s (2012) matrix are summarized in Figure 9. Two clusters are evident, one comprising the Devonian tetrapods (\textit{Ichthyostega} + \textit{Ventastega} + \textit{Acanthostega}) and the other comprising the Devonian fishes (\textit{Osteolepis} + \textit{Gogonasus} + \textit{Eusthenopteron} + \textit{Panderichthys} + \textit{Tiktaalik}). Every member of Group 1 is negatively correlated with every member of Group 2, apart from \textit{Tiktaalik}. \textit{Elginerpeton} is not positively correlated with any other taxon, but is negatively correlated with \textit{Osteolepis} and \textit{Eusthenopteron}. \textit{Elpistostege} is not positively or negatively correlated with any other taxon. Bootstrap values range from 36\% to 100\%, but are generally good with a median value of 94\%. The lowest bootstrap values are seen with the negative correlations between \textit{Elginerpeton} and, respectively, \textit{Eusthenopteron} (36\%) and \textit{Osteolepis} (45\%). The 3D MDS results (Figure 10) show the same clusters, with \textit{Elginerpeton} probably part of the Devonian tetrapod cluster and \textit{Elpistostege} standing apart from both clusters. There may also be an indication of discontinuity between the elpistostegids and the other fishes. The 3D stress was 0.1098 with minimal stress of 0.1097 at four dimensions.

The baraminic distance correlation results for Sookias et al.’s (2014) matrix are summarized in Figure 11. Two clusters can be seen, one comprising the Devonian fishes (including the elpistostegids) and
the other comprising the Devonian tetrapods. Every member of Group 1 is positively correlated with every other member of the group, the same is true of Group 2. Furthermore, every member of Group 1 is negatively correlated with every member of Group 2, with the sole exception of Tiktaalik with Ymeria. Elginerpeton is neither positively nor negatively correlated with any other taxon in the dataset. Bootstrap values range from 24% to 100%, with a median value of 65%. The lowest bootstrap values (24%–65%, with a median of 44%) are associated with the negative correlations between the Devonian fishes and a subset of the tetrapods (comprising Ymeria + Metaxygnathus + Densignathus + Ventastega). Bootstrap values for the negative correlations between the fishes and Ichthyostega + Acanthostega are generally higher (64%–99%, with a median of 88.5%). The 3D MDS results (Figure 12) show the same clusters, with Elpistostege a little separated from the other fishes. Elginerpeton stands apart from both clusters. The minimal stress was at three dimensions (0.171).

The baraminic distance correlation results for Clack et al.’s (2016) matrix with a subset of 13 taxa are summarized in Figure 13. At least two and possibly three clusters can be seen: (1) the elpistostegids + Eusthenopteron, (2) Tulerpeton + Pederpes, and (3) the rest of the tetrapods. All members of Group 2 are negatively correlated with all members of Group 1. However, there are no negative correlations between Group 3 and either of the other two groups, and one member of Group 3 (Ymeria) is positively correlated with one member of Group 1 (Tiktaalik). Overall, bootstrap values are very low, ranging from 19% to 97% with a median value of 64%. The 3D MDS results (Figure 14) reveal a diffuse cluster of tetrapods separated from the elpistostegids + Eusthenopteron, with Tulerpeton and Pederpes the furthest from the elpistostegids. The 3D stress was 0.155 with minimal stress of 0.146 at four dimensions.

The baraminic distance correlation results for Clack et al.’s (2016) matrix with a subset of 9 taxa are summarized in Figure 15. Two clusters can be seen, one comprising the Devonian fishes (including the elpistostegids) and the other comprising four of the Devonian tetrapodomorphs.
tetrapods (Ventastega + Ichthyostega + Ymeria + Acanthostega). However, there are no negative correlations between members of these two groups. Tulerpeton is not positively correlated with any other taxon in the dataset, but is negatively correlated with two members of Group 1 (Panderichthys, Eusthenopteron) and one member of Group 2 (Acanthostega). Metaxygnathus is neither positively nor negatively correlated with any other taxon. Again, bootstrap values are very low, ranging from 30% to 97% with a median value of 60%. The 3D MDS results (Figure 16) show the same two clusters, with Tulerpeton standing apart from both. The 3D stress was 0.130 with minimal stress of 0.113 at five dimensions.

DISCUSSION

Garner (2003) claimed that there was a morphological discontinuity between even the most fish-like tetrapods and the most tetrapod-like fishes, and our study provides statistical evidence to support that claim. Leaving aside our analysis of Ahlberg and Clack’s (1998) whole matrix, which includes too many outgroups, three of our analyses show no positive correlations between tetrapods and elpistostegids (Ahlberg and Clack 1998 with 11 taxa; Clack et al. 2016 with 9 taxa; Daeschler et al. 2006) and three show negative correlations (Ruta 2011 with 13 taxa; Swartz 2012 with 10 taxa; Sookias et al. 2014 with 11 taxa). There was only one analysis (Clack et al. 2016 with 13 taxa) in which a single elpistostegid (Tiktaalik) was positively correlated with a tetrapod (Ymeria), and when this analysis was re-run with fewer taxa and more characters even this positive correlation vanished. Minimally, therefore, our results suggest the presence of two apobaramins: tetrapods and elpistostegids. Our ability to detect discontinuity between the Devonian tetrapods and the elpistostegids is especially noteworthy, given that the Devonian tetrapods possess many fish-like characters and the elpistostegids possess many tetrapod-like characters. Theoretically, taxa that share characteristics of fish and tetrapods could have bridged the gap between these two groups, but our BDC and MDS analyses support separating them into distinct clusters even when such intermediate forms are included. In this respect our results are reminiscent of Wood’s (2010; 2016) finding that statistical baraminology is able to detect discontinuity between humans and non-humans, even though the fossil record includes some humans with ape-like characters and some apes with human-like characters.

Some taxa yielded inconsistent results in our study. For example, Elpistostege clustered as expected with other elpistostegids in two analyses (Daeschler 2006; Sookias et al. 2014), but failed to do so in one analysis (Swartz 2012); Elginerpeton clustered as expected with the tetrapods in two analyses (Ahlberg and Clack 1998; Swartz 2012), but failed to do so in one analysis (Sookias et al. 2014); Metaxygnathus clustered as expected with the tetrapods in three analyses (Ahlberg and Clack 1998; Sookias et al. 2014; Clack et al. 2016 with 13 taxa), but failed to do so in one analysis (Clack et al. 2016 with 9 taxa); and Tulerpeton clustered as expected with the other tetrapods in one analysis (Ahlberg and Clack 1998), but in another seemed discontinuous with them (Clack et al. 2016). Moreover, in some of our analyses certain Carboniferous tetrapods clustered with Devonian tetrapods (Whatcheeria in Ahlberg and Clack 1998, Whatcheeria, Crassigyrinus and Pederpes in Ruta 2011; Pederpes, Diploradus, Whatcheeria and Perottodus in Clack et al. 2016) while in others they clustered separately from them (e.g. Crassigyrinus and Greererpeton in Ahlberg and Clack 1998). Further work will be needed to elucidate the baraminic status of the taxa within these presumably apobaraminic groups.

Several possible limitations to the current study suggest themselves. The first concerns the non-holistic nature of some of the datasets, a problem exacerbated by the loss of characters after filtering. For instance, Ahlberg and Clack’s (1998) matrix consisted of mandibular characters only and Ruta’s (2011) matrix of appendicular skeletal characters only. However, missing characters is a perennial problem with fossil data and can only be resolved with the discovery of more fossil material. Moreover, other matrices in our study sampled a greater range of skeletal characters, and in two cases (Daeschler 2006; Swartz 2012) good representation of the character sets was maintained even after filtering. A second concern is the possible non-independence of the character datasets that we analysed. Clearly there is some overlap in the sources used by Daeschler et al. (2006), Swartz (2012), Sookias et al. (2014) and Clack et al. (2016) to construct their matrices, so it is reasonable to ask whether we are actually dealing with six different matrices or merely variants of fewer matrices. However,
it is worth pointing out that two of our datasets appear to have been newly constructed and not based on earlier matrices (Ahlberg and Clack 1998; Ruta 2011), and those that did draw on previously published matrices reored or modified some characters and/or used different character-taxon combinations. Overall, we feel that the matrices we selected are sufficiently different to regard them as independent. A third issue concerns the bootstrapping results. Some of our analyses were characterized by poor bootstrap values, in particular those based on the matrices of Ahlberg and Clack (1998), Sookias et al. (2014) and Clack et al. (2016). However, as Wood (2003b) has pointed out, low bootstrap values should not be taken to imply that the correlations are not significant, but rather that they are highly dependent on a particular character set. This highlights where future research may be needed. Moreover, the fact that we obtained similar results with datasets yielding better bootstrap values bolsters our confidence in the conclusions that we have drawn. Finally, a fourth concern is our removal of outgroups, a procedure that raises the question of whether different results might have been obtained had more of those taxa been retained in our analyses. Our rationale for removing these taxa is that they represented multiple families so different from the Devonian taxa in which we were particularly interested, that their presence in our analyses was swamping discontinuities that were otherwise evident among the Devonian forms. However, other analyses could undoubtedly be run with different outgroup selections in order to see whether our results can be replicated.

CONCLUSION

Our studies reveal statistical evidence of morphological discontinuity between Devonian and Carboniferous tetrapods and the Devonian elpistostegids, which we interpret as evidence of phylogenetic discontinuity and, by implication, separate ancestry. Given that this result was consistent across all six of our datasets, we think that our conclusions are robust and will likely withstand future analyses. However, further studies using other datasets with different combinations of taxa and characters are encouraged.

ACKNOWLEDGMENTS

We would like to thank the Creation Biology Society for financial assistance and Todd C. Wood for help with drafting the bootstrap plots. We are also grateful to two anonymous reviewers, whose advice and comments greatly improved this paper.

REFERENCES

494.

Narkiewicz, K. and M. Narkiewicz. 2015. The age of the oldest tetrapod tracks from Zachelme, Poland. Lethaia 48:10-12.

THE AUTHORS

Paul A. Garner is a full-time Researcher and Lecturer for Biblical Creation Trust in the UK. He has an MSc in Geoscience from University College London, where he specialised in palaeobiology. He is a Fellow of the Geological Society of London and a member of several other scientific societies. His first book, *The New Creationism: Building Scientific Theories on a Biblical Foundation*, was published by Evangelical Press in 2009.

Jonathan Asher is currently studying for a BSc in Biochemistry at a British university.