

Cedarville University DigitalCommons@Cedarville

Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session

Fall 12-5-2014

GMO vs. Non-GMO: Comparing the Addictiveness of Corn in Rats

Aric Carroll Cedarville University, cacarroll@cedarville.edu

Sara L. Hill *Cedarville University*, shill@cedarville.edu

Kelly A. Huston Cedarville University, kellyhuston@cedarville.edu

Tyler Michael *Cedarville University*, tmichael@cedarville.edu

Courtney Noll *Cedarville University*, cnoll@cedarville.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.cedarville.edu/ pharmacy_nursing_poster_session Part of the <u>Pharmacy and Pharmaceutical Sciences Commons</u>

Recommended Citation

Carroll, Aric; Hill, Sara L.; Huston, Kelly A.; Michael, Tyler; Noll, Courtney; Beck, Melissa J.; and Cameron, Ginger D., "GMO vs. Non-GMO: Comparing the Addictiveness of Corn in Rats" (2014). *Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session*. 59.

http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session/59

This Poster Session is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact digitalcommons@cedarville.edu.

Authors

Aric Carroll, Sara L. Hill, Kelly A. Huston, Tyler Michael, Courtney Noll, Melissa J. Beck, and Ginger D. Cameron

GMO vs. Non-GMO: Comparing the Addictiveness of Corn in Rats

A. Carroll, S. Hill, K. Huston, T. Michael, and C. Noll, Pharm D. Candidates Melissa Beck, Ph.D.; Ginger Cameron, Ph.D., M.Ed. Cedarville University School of Pharmacy

STATEMENT OF THE PROBLEM

Background

- Genetically modified (GMO) corn accounted for approximately 88% of all corn consumed in the United States in 2012. The health and safety implications of GMO corn use remain a controversial topic.¹
- Addictive behavior has been demonstrated in as many as 47% of adults in the United States. The addictive substance could be anything from tobacco and alcohol to gambling, shopping, or sex. Studies have also demonstrated that eating can be an addictive

PROPOSED METHODS

Study Design

• Controlled experimental physical dependency animal study

Sample

- Sprague-Dawley rats obtained from Harlan Laboratories and randomly assigned to 3 experimental groups
- Six weeks old at time of purchase

behavior.²

Significance of the Problem

- Studies comparing the addictiveness of GMO corn to non-GMO corn have not been conducted.
- If GMO corn is found to be more addictive than non-GMO corn, the findings will be strongly implicated in the incidence of obesity and its associated pathologies in the United States.

OBJECTIVES

To compare the addictiveness between GMO corn and non-GMO corn in rats.

HYPOTHESES

Null Hypothesis: There is no statistically significant difference between the level of addictiveness between GMO corn and non-GMO corn in rats.

Alternative Hypothesis: GMO corn products are more addictive than non-GMO corn products in rats.

• The expected weight of the males will range from 225-275 grams and the weight of the females will range from 150-200 grams.

Data Collection

- Collection of cage food consumption and body weight data will begin during a 28 day treatment period during which each experimental group will be fed a pre-specified percentage of GMO corn (0%, 50%, and 100%).
- Behavioral changes, cage food consumption, and body weight changes for each of the 3 groups will be observed over the course of a 10 day withdrawal period immediately following the initial 28 day period. During this 10 day period, the rats will be fed a noncorn control feed.

Measurement

- Data will be collected during the treatment period to assess body weight and cage food consumption.
- Behavioral changes will be observed in an open field test. Signs of withdrawal are listed in the "Proposed Analysis" section.
- Each rat will be scored based on the withdrawal signs they exhibit.

PROPOSED ANALYSES

The table below lists the withdrawal symptoms to be measured.³ The presence of a symptom will be scored as a 1. The absence of a sign will be scored a 0. The scores will be totaled for each animal. The total scores will be compared using a repeated measures ANOVA test in SPSS.

PROJECT TIMELINE

LIMITATIONS

- We are not identifying the specific chemical components of the corn molecule that lead to any differences in addictiveness.
- We are only assessing GMO corn and not other GMO products to see how addictiveness is affected by genetic modification in those other items.

FUTURE DIRECTIONS

The purpose of this study is to provide exploratory framework for future dependency studies with GMO products.

ACKNOWLEDGEMENTS

Wet dog shakes	Writhing	Teeth chattering	Convulsions	Increased muscle tone	Tail erection
Jumps	Twitches	Tremors	Struggling/ vocalizing	Ptosis	Weight loss
Ataxia/ posture change	Vocalization	Diarrhea	Piloerection	Increased startle response	Exophthalmos

REFERENCES

- 1. Agriculture and Rural Development. US Crops Where Are They Grown? http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sis5219 Updated September 2014. Accessed September 28, 2014.
- 2. Avena, N.M., Rada, P., Hoebel B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neuroscience & Biobehavioral Reviews, Volume 32, Issue 1, 2008, 20-39, ISSN 0149-7634. Accessed September 3, 2014.

Observations/Symptoms

We would like to thank Dr. Aleda Chen for her contributions to the design and future

implementation of this research project.

3. Buckett W. A new test for morphine-like physical dependence (addiction liability) in rats. *Psychopharmacology* [serial

online]. November 7, 1964;6(6):410. Ipswich, MA. Accessed November 19, 2014.