Natural Products as Therapeutic Agents in Cancer Treatment

Trevor Stump
Cedarville University, tstump@cedarville.edu

Lauren P. Williams
Cedarville University, lpwilliams@cedarville.edu

Brittany Santee
Cedarville University, brittanynsantee@cedarville.edu

Chelsae Ward
Cedarville University, chelsaeeward@cedarville.edu

Rachel Kunze
Cedarville University, rkunze@cedarville.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.cedarville.edu/research_scholarship_symposium

Part of the [Oncology Commons](http://digitalcommons.cedarville.edu/ouc), and the [Pharmacy and Pharmaceutical Sciences Commons](http://digitalcommons.cedarville.edu/pharmacy)

Stump, Trevor; Williams, Lauren P.; Santee, Brittany; Ward, Chelsae; Kunze, Rachel; Simpson, Denise S.; and Amos, Samson, "Natural Products as Therapeutic Agents in Cancer Treatment" (2014). *The Research and Scholarship Symposium*. 21.

Presenters
Trevor Stump, Lauren P. Williams, Brittany Santee, Chelsae Ward, Rachel Kunze, Denise S. Simpson, and Samson Amos
Natural products as therapeutic agents in cancer treatment

Eric Huseman, Lauren Williams, Brittany Santee, Trevor Stump, Chelsae Ward, Rachel Kunze, Denise Simpson, Samson Amos

School of Pharmacy, Cedarville University, Cedarville, OH 45314

STATEMENT OF THE PROBLEM

Background
Cancer accounts for 25% of deaths in the United States.¹ Brain tumors play a large role in this percentage. The brain tumor incidence rate was 6.5 per hundred thousand between the years 2006 and 2010 in the United States.² Statistics indicate that there is an age adjusted mortality rate of 4.3 per hundred thousand persons across all age groups diagnosed with brain and other nervous system invasive cancers.²

Flavonoids and curcuminoids have shown potential for treating brain tumors in past studies. Genestin, a flavonoid, has shown promise for treating brain tumors since it inhibits the growth of glioblastoma and medulloblastoma cells by stopping the cell cycle at the G2/M checkpoint.³ Another study found that the curcuminoid curcumin binds to the cell surface membrane and later goes into the cytoplasm to induce cell death.⁴ A separate study found that curcumin downregulates various IGF (insulin-like growth factor) ligands to inhibit glioblastoma and medulloblastoma cells.⁵ Despite these promising results, there are some major gaps in the research. Specifically, there has not been a significant amount of research done on the effectiveness of flavonoids in the treatment of brain tumors.

Significance of the Problem
Relative to other types of cancers, brain tumors are difficult to treat. They prove resistant to chemotherapy and radiotherapy and show an increased tendency for infiltration. In response, scientists have conducted research to reveal the nature of brain tumor cells and the relationship they have with their in vivo environment. In one study, researchers found that brain tumor stem cells live in a unique environment. They depend on perivascular cells within the brain which provide an ideal growth environment for these stem cells.⁶ These researchers also discovered that brain tumor cells depend on microRNAs for growth, proliferation, and overall survival.⁷ Some avenues of current brain tumor research attempt to target these microRNAs in hopes of discovering a more effective clinical treatment.⁸

Past research has studied the effects of certain plant compounds such as curcuminoids and cyanidins on various types of cancer cells. These compounds were found to inhibit metastasis in breast and lung cancer cells.⁹,⁸ Our work will attempt to build and expand upon prior research examining flavonoids’ effect on brain tumors in an attempt to find an effective treatment.

OBJECTIVES

Objective 1: To determine the effectiveness of flavonoids as therapeutic agents in brain tumor treatment.

Objective 2: To identify the signaling mechanism by which flavonoids modulate their therapeutic effects on brain tumor cell lines.

HYPOTHESES

Alternative Hypothesis 1 for Objective 1: There is a difference in cell death between cells treated with flavonoids and control cells not given any treatment.

Alternative Hypothesis 2 for Objective 1: There is a difference in cell proliferation between cells treated with flavonoids and control cells not given any treatment.

Alternative Hypothesis 3 for Objective 1: There is a difference in brain tumor invasion between cells treated with flavonoids and control cells not given any treatment.

REFERENCES

PROJECT TIMELINE

January 2014-December 2015: Data collection and analysis

LIMITATIONS

• While the study examines multiple brain tumor cell lines, the generalizability of the study is limited as there are many more cell lines found in brain tumors.
• Results obtained in the in vitro environment may not translate to the in vivo environment.

FUTURE DIRECTIONS

The goal of this study is to provide the basis for future in vivo translational studies in animal models.

ACKNOWLEDGEMENTS

We would like to thank Dr. Aleda Chen (Cedarville University) for her intellectual contributions to this project.