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Practical Considerations for State Estimation of an Autonomous Vehicle
Joshua Kortje, Ian Steptoe, Danielle Fredette

Cedarville University

Abstract

The Kalman Filter is a widely used algorithm for state esti-
mation and sensor fusion. It can aggregate information from
multiple sensors along with a linear state prediction model
all while accounting for sources of error probabilistically. In
theory, the Kalman filter is an optimal state estimator. In
practice, the performance depends on the engineer’s ability
to quantify a sufficiently accurate linearized prediction model
as well as the probabilistic models of measurement and pro-
cess error. This project is a review of relevant literature and
assembly of the pieces of information necessary to implement
a practical Kalman filter for the state/localization estima-
tion of an autonomous vehicle. We will focus on the meaning
of the various parameters/models, concrete ways of approxi-
mating these parameters/models, and what the Kalman filter
can and cannot do to make an autonomous car system more
robust.

Background

The Kalman filter is a method of digital filtering known as a
state estimator. In fact, a Kalman filter is an optimal state esti-
mator for a linear system with normally distributed, zero-mean
noise. The Kalman filter has been used in many applications
including financial analysis, target tracking, and autonomous ve-
hicle localization. [3] Kalman filters are popular because of their
ability to use probabilistic models to efficiently and optimally
account for error in real-time systems, provide a prediction, and
synthesize information. Kalman filters are often discussed in lit-
erature and industry, but we wanted to know what data, models,
and parameters would be necessary in order to use one for our
autonomous car project.

Benefits

In an autonomous vehicle, a Kalman filter can provide a robust
method to use information from multiple sensors to estimate
the correct location of the vehicle. Using multiple sensors is
advantageous because if one sensor stops providing reliable data
(the GPS loses its connection) the other sensor(s), along with
the prediction model, can continue to direct the movement of the
vehicle. Furthermore, all sensors have error in the measurements,
and the Kalman filter helps to account for and correct the error.
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Figure: Planar position of “toy car”
simulation, measured and estimated
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Figure: Error in measurement and
estimate for “toy car” simulation

Parts to a Kalman Filter

x̂−
k = Ax̂k−1 + Buk (1)

P−
k = APk−1A

T + Q (2)

Kk = P−
k H

T

HP−
k HT + R

(3)

x̂k = x̂−
k + K(zk −Hx̂−

k ) (4)

Pk = (I −KkH)P−
k (5)

These 5 equations govern the Kalman filter. To execute the above
equations, the following pieces are needed to provide a complete
picture of the system/application.[4]
•Dynamics Model (A): A model using physics to predict where
the vehicle will be based on past states.

•Control Input (uk): Any known inputs to the system.
• Sensor Data (zk): Measurements of observable facets of the
system.

•Measurement Noise Covariance (R): A model of the expected
error or noise in the measurements.

•Process Noise Covariance (Q): A model of the expected error
or noise in the dynamics model being used to predict the next
state of the system.

• Initial Estimate Error Covariance (P0): An estimate of the
error in the initial state of the system.

Assumptions vs Reality

•Error in both measurement and process/model has a
Gaussian distribution with zero mean

•The sensors, taken together, give sufficient information to
estimate the location of the car
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Figure: Histogram of measurement error

Future Investigations

• Further research into how Kalman filters can be used with
sensor fusion with redundant sensors

•Test the Kalman filter in the scenario where the car loses
GPS signal intermittently

• Investigate the limitations of the Kalman filter with
different types of (non-Gaussian) error

Estimation of Covariance Matrices

A covariance matrix of an error vector E = [e1 ... ek]T is defined

E =



σ2
e1

Σe1,e2 . . . Σe1,ek
... . . .

Σek,e1 Σek,e2 . . . σ2
ek


,

where variance is defined as

σ2
ei

=
N∑
n=1

(eni − ēi)2

N − 1
,

and covariance is defined as

Σei,ei =
N∑
n=1

(eni − ēi)(enj − ēj)
N − 1

,

N is the number of samples, and ēi represents the mean of those
samples.
To estimate the measurement covariance matrices, you need:
•measurements collected from a run
• the true position for the same run
To accomplish this practically,
we
• affixed
chalk to the golf cart so
that a line would be drawn
beneath the GPS as it drove

• used surveying
equipment to measure
points along the chalked line

• interpolated
between surveyed
points using a cubic spline fit

Error = GPS − surveyed is
fed into the equations above to
calculate the measurement error covariance matrix, R.
The state covariance P0:
•Calculated with respect to the state vector itself
•Use a higher value of P0 when initial measurements should
not be trusted.

The process error covariance R:
•There is no direct way to measure the error in our dynamics
model

• Letting Q = 0 means we assume zero process error
•You could minimize a cost function to estimate Q [1]
•What we did: estimate Q indirectly [2]
Using the control coefficient matrix, the random variance can be
projected onto the acceleration standard deviation (σa). Then,
this result is integrated to produce the continuous time process
error covariance matrix as described below

Qc = ∫ ∆t
0 σ2

aBB
Tdt (6)
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Results
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Figure: Planar vehicle path with measurement, estimate, and survey truth
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Figure: Error in measurement and estimate

Integral of error in latitude was improved by: 1.57 m-s
Integral of error in longitude was improved by: 1.91 m-s

Conclusion

•We learned the strengths and weaknesses of the Kalman filter
for our project

•We present a process for a measurement-based estimate of
covariance matrices

•We identified gaps in the application-focused liturature on
practical Kalman filter use

•The resulting Kalman filter was tested on simulated and real
autonomous car data

•Results show that the Kalman filter made small reductions in
error compared to measurement alone

•We identified the next steps to take in order to make a
Kalman filter helpful to the autonomous car project
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