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ABSTRACT 
 
This paper summarizes a beginning attempt to develop a numerical simulation tool for the 
primary erosion, transport, and sedimentation processes that operated during the Genesis Flood. 
It is based upon a code developed in the 1990’s that solves the shallow water equations on the 
surface of a rotating sphere. The shallow water approximation, appropriate for this application, 
treats the water on the face of the earth in terms of a single vertical layer but with variable 
bottom height. The model assumes that the dominant means for sediment transport during the 
Flood was by turbulent, rapidly flowing water. Theory for open-channel turbulent flow is applied 
to treat the suspension, transport, and deposition of sediment. Cavitation is assumed to be the 
dominant process responsible for degradation of bedrock as well as for erosion of already 
deposited sediment. As an initial working hypothesis, horizontal accelerations required to 
achieve water velocities of 100-250 m/s arise from a sequence of large tides produced by 
repeated near approaches of a moon-sized body with the earth. An illustrative calculation shows 
that with plausible parameter choices a single tide 2500 m in height produces a blanket of 
sediment some 150 m thick on average over the continental surface in the span of only a few 
days. Based on this result, it is proposed that six near encounters with a moon-sized body 
temporarily captured by the earth can plausibly account for the six mega-sequences that are so 
prominent in the Phanerozoic sediment record. In particular, such large impulsive tides 
conceivably might explain the global erosional unconformities that define the mega-sequence 
boundaries.  
 
INTRODUCTION 
 
Accounting for the thick fossil-bearing sediment sequences that blanket the surfaces of the 
continents is an important issue for understanding the physical aspects of the Genesis Flood. In 
continental platform regions, such as the heartland of the U.S., the sequence of fossil-bearing 
sediments are commonly 2000 m or more in thickness (Prothero and Schwab, 2004). They also 
typically display astonishing horizontal continuity (e.g., Ager, 1973). Just what sort of physical 
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processes could have moved such huge volumes of sediment and arranged it in such orderly, 
laterally extensive layers within the span of a single year, as Scripture indicates? As a 
preliminary exercise one can make rough estimates of sorts of erosion, sediment transport, and 
deposition rates that are required.  If we assume that most of the primary deposition occurred 
within the interval of 150 days during which “the water prevailed on the earth” (Genesis 7:24), 
we can compute an average deposition rate over that interval needed to produce a column of 
sediment, say, 2000 m thick. Dividing 2000 m by 150 days yields a time-averaged rate of 
deposition of 1.54x10-4 m/s or 0.56 m/hr. It also suggests a comparable rate of erosion in many 
places.   
 
The large lateral extent of most of the layers suggests significant transport distances. Let us 
assume that the average distance between the sites of erosion and deposition is 2000 km (2x106 
m) and that the average speed of the water is 20 m/s (45 mph). A typical sediment particle is 
therefore in suspension for (2x106 m)/(20 m/s) = 1x105 s (27.8 hr). If the input and output of the 
pipeline, so to speak, is the erosion/deposition rate of 1.54x10-4 m/s, then the average suspended 
sediment load distributed vertically through the sheet of flowing water must be (1.54x10-4 m/s) x 
(1x105 s) = 15.4 m. This requires that the depth of the flowing water be great enough and also its 
turbulence intense enough to carry this sort of suspended load. From these simple estimates it is 
obvious that any viable candidate mechanism likely involves coherent sheets of turbulent water 
at least tens of meters high sweeping over the land surface at velocities of at least tens of m/s. 
Since these are time-averaged estimates, when the likelihood of significant time variation, even 
episodicity, is taken into account, the peak water depths and speeds would likely have been 
substantially higher.  
 
What might have caused water to move with such vigor across the continent surfaces? The only 
viable candidate mechanism I have thus far been able to identify is the tide caused by a near 
approach of a moon-sized or larger body. Bolide impacts, to be sure, generate tsunamis, but, 
guided by the crater sizes found in the geological record (Osinski, 2006), the corresponding 
tsunami amplitudes appear to be too feeble (Mader, 2004, pp. 233-245, “Asteroid Generated 
Tsunamis”).  Therefore, as a working hypothesis, I assume it is the tide raised by the near 
approach of a moon-sized body that provides the forcing for the water motions and the resulting 
erosion, sediment transport and deposition processes which are modeled and described in this 
paper.  
 
WHAT IS FLUID TURBULENCE? 
 
The importance of the role of turbulence in fluids was clearly recognized in the early part of the 
19th century when the pressure drop in water pipes and the drag of water on ships were 
hydraulics issues of considerable practical concern. It was known that both the pressure drop in 
pipes and the drag exerted on ships as they moved through the water had two components, one 
linear and the other approximately quadratic in the fluid velocity. Surprisingly it was found that 
only the first one depended on the viscosity of the fluid. In the 1850’s G. Hagen and H. Darcy 
both published careful measurements of fluid flow through large pipes. They both noted that the 
quadratic component was associated with disordered motion in the fluid and that it became the 
dominant contribution when the pipes were large and the flow speed became sufficiently high. 



They speculated that the increased drag was due to the energy spent in creating velocity 
fluctuations as the flow became turbulent.  
 
G. Stokes (1851) was the first to show that the onset of turbulent flow depends on the ratio of the 
inertial force of the moving fluid to the viscous forces acting upon it. This ratio is today known 
as the Reynolds number, named after O. Reynolds, who in the 1870’s and 1880’s published a 
series of papers describing results of his careful experimental studies on the transition from 
laminar to turbulent fluid flow, first in pipes and then in other settings.  Reynolds, in an 1883 
paper, (Reynolds, 1883) stressed the importance of this dimensionless ratio that now bears his 
name. This ratio, the Reynolds number Re, is usually expressed as Re = vL/ν, where v is the fluid 
velocity, L is a characteristic spatial dimension of the flow, and ν is the kinematic viscosity. 
 
In the early 20th century Ludwig Prandtl made an important computational advance by 
introducing the concept of a fluid boundary layer. In a groundbreaking 1905 paper he 
showed that the equations for fluid flow could be simplified by dividing the flow field into two 
regions: a boundary layer in which fluid viscosity plays a major role and (2) the region outside 
the boundary layer, where viscosity can be neglected with no significant effects on the 
solution. Prandtl's boundary layer theory provided crucial new understanding of skin friction 
drag and how streamlining reduces drag on airplane wings and other bodies that move relative to 
a fluid environment.  
 
But what is fluid turbulence? The British scientist L. F. Richardson (1920) described fluid 
turbulence in poetic fashion as follows:  
 

Big whorls have little whorls 
   That feed on their velocity, 
And little whorls have lesser whorls 
   And so on to viscosity. 

 
Richardson's picture of turbulence is a flow comprised a hierarchy of vortices, or eddies, from 
large to tiny. These eddies, including the large ones, are unstable. The shear that their rotation 
exerts on the surrounding fluid generates smaller new eddies. The kinetic energy of the large 
eddies is thereby passed to the smaller eddies that arise from them. These smaller eddies in turn 
undergo the same process, giving rise to even smaller eddies that inherit the energy of their 
predecessors, and so on. In this way, the energy is passed down from the large scales of motion 
to smaller and smaller scales until reaching a length scale sufficiently small that the molecular 
viscosity of the fluid transforms the kinetic energy of these tiniest eddies into heat.  
 
In 1941, the Russian A. N. Kolmogorov postulated that for very high Reynolds numbers, the 
small scale turbulent motions are statistically isotropic (i.e., have no preferential spatial 
direction). In general, the largest scales of a flow are not isotropic, since they are determined by 
the particular geometrical features of the boundaries. Kolmogorov's idea was that, in the energy 
cascade which Richardson described, this geometrical and directional information is lost. This 
means that the statistics of the smaller scales has a universal character and that they are the same 
for all turbulent flows when the Reynolds number is sufficiently high.  He further hypothesized 
that for very high Reynolds numbers the statistics of small scales are universally and uniquely 
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determined by the viscosity ν and the rate of energy dissipation ε. With only these two 
parameters, a unique length λ can be obtained by dimensional analysis given by 
λ = (ν3/ε)1/4. This is today known as the Kolmogorov length scale. 

Kolmogorov’s concept was that turbulent flow is characterized by a hierarchy of scales through 
which the energy cascade takes place. Dissipation of kinetic energy occurs at scales of the order 
of Kolmogorov length λ, while the input of energy into the cascade comes from the decay of the 
large scales, characterized by scale length L. These two scales at the extremes of the cascade can 
differ by several orders of magnitude at high Reynolds numbers. In between there is a range of 
scales (each one with its own characteristic length r) that has formed at the expense of the energy 
of the large ones. These scales are very large compared with the Kolmogorov length, but still 
very small compared with the large scale of the flow (i.e., λ << r << L). Since eddies in this 
range are much larger than the dissipative eddies that exist at Kolmogorov scales, hardly any 
kinetic energy is dissipated in this range. Rather, it is merely transferred to smaller scales until 
viscous effects begin to become important as the Kolmogorov scale is approached. Within this 
range inertial effects of the moving fluid parcels are still much larger than viscous effects. 
Therefore within this inertial range it is possible to neglect the effects of molecular viscosity in 
the internal dynamics. Although some further details have emerged in the 70 years since 
Kolmogorov published these ideas, modern understanding of turbulence rests squarely on the 
basic picture he provided. 

TURBULENCE IN OPEN CHANNEL FLOW 
In this paper, the concern is with large-scale erosion and sediment transport and deposition 
processes over a continental surface driven by a rapidly moving water layer.  This problem is in 
the general category of open channel flow, which is one of great practical interest and one that 
has been studied experimentally for many years. Examples of open channel flows include rivers, 
tidal currents, irrigation canals, and sheets of water running across the ground surface after a 
rain. The equations commonly used to model such flows are anchored in experimental 
measurements and decades of validation in many diverse applications. These experiments show 
that, except for the immediate vicinity of the boundary, the mean velocity profile in the turbulent 
flow regime is very close to being a logarithmic function of distance from the boundary. If in 
addition the boundary is rough due to the presence of, say, discrete sand-sized particles forming 
the boundary, the mean velocity ū (that is, the total velocity with the high frequency fluctuations 
due to turbulence subtracted away) as a function of height z above the boundary is given to good 
approximation by 
 
     ū(z) = 2.5 uτ ln(z/zo) ,     (1) 
 
where uτ is what is commonly referred to as the shear velocity or friction velocity and zo is a 
number proportional to the size of the roughness elements along the boundary. This result and 
the brief account of turbulent boundary layer theory which follows are based on lecture notes for 
a 2009 graduate course entitled “Turbulent Boundary Layers” by David Apsley (2009) at the 
University of Manchester, UK. Apsley, in turn, relies somewhat on Pope (2000). 
 
The quantity uτ, defined as uτ = (τo/ρ)1/2, where τo is the boundary shear stress and ρ is the fluid 
density, should consciously be understood as a measure of the boundary shear stress rather than 
an actual velocity, even though it has dimensions of velocity and it is commonly referred to as 



such. Using (1) the friction velocity uτ can be computed from the depth h of the turbulent layer 
and the mean velocity at z = h as uτ  = ū(h)/[2.5 ln(h/zo)]. Assuming that the boundary roughness 
arises from fairly well sorted mineral sediment particles with the usual natural range of particle 
shape and roundness, the quantity zo is given by D/30, where D is the characteristic particle size.  
For purposes of this paper, D is chosen to be 0.5 millimeters, the value commonly used to 
distinguish coarse from medium sand. The factor 2.5 is the reciprocal of the von Karman 
parameter, an experimentally determined quantity, named after Theodore von Kármán, a 
Hungarian-American aeronautical engineer considered by many to be the preeminent theoretical 
aerodynamicist of the 20th century. 
   
Equation (1) provides a realistic, experimentally validated description of the mean horizontal 
velocity and the associated turbulence from just a few millimeters above the boundary to the top 
of the flowing layer. Note that the kinematic viscosity ν does not appear. This is because at the 
surface the drag on the surface is dominated by the roughness of the sediment particles and the 
turbulence this generates, rather than shearing of the water itself. The representation of the 
turbulent flow of equation (1) is used to connect the global water velocity field obtained by 
solving the shallow water equations on a rotating sphere (the earth) with the more localized 
model of erosion, sediment transport, and sediment deposition described below.  
 
SUSPENDED SEDIMENT PROFILE 
 
The following treatment of suspended sediment follows closely that provided by Harris (2003) in 
his lecture notes for a graduate course on sediment transport processes. Suspension of sediment 
particles occurs when the turbulent velocity fluctuation w’ in the vertical direction is at least as 
large as the settling speed w of the particles.  Experiments show that the vertical velocity 
fluctuation w’ due to turbulence is approximately equal to the friction velocity uτ, that is, w’ ≈ uτ 
near the bottom of the turbulent layer. A quantity known as the Rouse parameter P, involving the 
ratio of w to uτ and defined as P = w/κuτ = 2.5w/uτ, is commonly used as a criterion for 
suspension. (κ is the von Karman parameter, whose value is 0.4)  Based on experimental 
observation it is found that for P > 2.5 there is no suspension, for 1 < P < 2.5 there is incipient 
suspension, and for P < 1 there is full suspension. Note that the particle settling speed w, and 
hence also the Rouse parameter P, depends on particle size. 
 
To characterize the sediment load of the turbulent layer of water, it is useful to use the local 
volume fraction c of sediment in the flow. If the flow is reasonably uniform in the horizontal 
direction on spatial scales on the order of the layer thickness, which we shall assume, and is 
reasonably steady on time scales on the order of our numerical time step, then from mass 
conservation it can be shown that 
 
                                ∂/∂z[c w + <c’ w’>] = 0 ,     (2) 
 
where prime (‘) denotes the fluctuating component and < > denotes time average.  The term <c’ 
w’> represents vertical diffusion of suspended sediment by turbulent eddies.  This term can be 
rewritten in terms of an eddy diffusivity Ks as <c’ w’> = Ks ∂c /∂z, and equation (2) can then be 
rewritten as 
 



                                ∂/∂z[-wc - Ks ∂c /∂z] = 0 .     (3) 
 
Integrating this equation with respect to z yields 
 
             -w c = Ks ∂c /∂z .      (4) 
 
This states that for steady, uniform conditions the downward settling of sediment (-w c) balances 
the upward diffusion of sediment by turbulent eddies.  Integrating once more with respect to 
height using y as the variable of integration yields 
 
      ln[c(z)/c(a)] = -w ∫ 𝑑𝑦

𝐾𝑠(𝑦)
𝑧
𝑎  ,     (5) 

 
where a is a reference height near the bed where the concentration c(a) can be specified.  In 
turbulent flow near the bed the eddy viscosity Km for momentum is given by Km = κuτ z, where κ 
is the von Karman parameter, uτ  is the friction velocity, and z is height.  Since the same eddies 
that diffuse momentum vertically also diffuse mass, one can represent the eddy diffusivity Ks as 
Ks = ακuτ z, where α is a constant of proportionality. For low sediment concentrations α ≈ 1, and 
for high concentrations a value of 1.35 is commonly used.  Substituting this expression for Ks 
into the right hand side of (5) we find 
 
    -w ∫ 𝑑𝑦

𝛼κ𝑢𝜏𝑦
𝑧
𝑎  = -[w/(ακuτ)] ln(z/a).    (6) 

 
Combining (5) and (6) and using the fact that the Rouse parameter P = w/κuτ , we obtain the 
following expression for the volume fraction c of sediment as a function of height z above the 
bed 
 
     c(z)/c(a)  = (z/a)-P/α  .            (7) 

This result is valid only near the base of the turbulent layer. To obtain a description that is 
applicable throughout the turbulent layer it is necessary to use an eddy diffusivity that decreases 
more strongly with height. One such functional form commonly used yields an eddy diffusivity 
profile that is parabolic, decreasing to zero at the top of the turbulent layer at z = h and 
approaching ακuτ z near the base of the layer. It is expressed as Ks = ακuτ z(1 – z/h).  
Substitution of this quadratic eddy diffusivity into equation (5) yields what is known as the 
Rouse profile, 

    ci(z)/ci(a) = {[z(h - a)]/[a(h - z)]}-Pi/α  .   (8) 

Since the Rouse parameter depends on particle settling velocity which in turn depends on particle 
size, we divide the sediment into a finite number of sediment classes according to particle size 
which we designate by the subscript i. Equation (8) then provides a separate vertical distribution 
of volume fraction for each sediment class. 

  



CARRYING CAPACITY OF THE TURBULENT FLOW 

If, for the moment, we assign a value to ci(a) of unity and integrate (8) with respect to height 
from a to h, noting that {[z(h - a)]/[a(h - z)]}-Pi/α = [(h/z - 1)]/[(h/a - 1)]Pi/α, we obtain the 
following expression for the carrying capacity Fi of the flow for each sediment class 

𝐹𝑖 = 1/(ℎ/𝑎 − 1)𝑃𝑖/𝛼 ∫ (ℎ/𝑧 −  1)𝑃𝑖/𝛼𝑑𝑧ℎ
𝑎   .            (9)  

Note that Fi depends only on the Rouse parameter Pi, of the sediment class and the depth of the 
turbulent layer h. We choose the reference height a to be constant with a value of 1 cm. Also 
note that Fi, with units of distance, is the total thickness of sediment that the flow can suspend, 
assuming the volume fraction could reach unity at z = a. For practical reasons, we actually divide 
the height coordinate z into a number of discrete zones or layers, indexed by k, and compute a 
sediment carrying capacity Fi

k for each layer. The total column carrying capacity Fi is then given 
by Fi = ΣFi

k, where the summation is over k.  In the illustrative case we describe later, we use a 
total of seven vertical layers of fixed thickness to resolve the sediment profile in the turbulent 
flow. 

SETTLING SPEED OF SEDIMENT PARTICLES 

As we have seen, the ability of a turbulent flow to suspend sediment particles and maintain them 
in suspension depends on the settling velocity w of the particles. The Rouse parameter P that 
occurs as the exponent in the vertical sediment distribution formula (8) involves the ratio of the 
settling velocity w to the friction velocity uτ  of the turbulent flow. A great deal of experimental 
effort has been invested to characterize the settling velocity of sediment particles over the past 60 
years. To obtain appropriate values for w we utilize a simple formula developed by Jiménez and 
Madsen (2003) that provides a good fit to the experimental measurements for grain sizes 
between 0.063 mm and 1 mm, covering the range from very fine to coarse sand.  This formula is 

w(d) = Y/(A + B/S),     (10) 

with Y = [(s – 1) g d]1/2 and S = 0.25 d Y/ν, where d is the nominal grain diameter, s is the 
specific gravity of the sediment grains, g is gravitational acceleration, ν  is the kinematic 
viscosity of water, and A and B are constants arising from the fit to the data.  We assume a 
specific gravity s for sand of 2.65, the value for g to be 9.8 m/s, and a kinematic viscosity ν for 
water of 10-6 m2/s. The values for the constants A and B provided by Jiménez and Madsen 
(2003) are A = 0.954 and B = 5.12.  For each sediment class i with mean nominal grain diameter 
di we apply (10) to obtain the settling velocity wi for that sediment class. For the case described 
in this paper we choose three sediment classes with nominal grain diameters di of 0.063 mm, 
0.25 mm, and 1 mm, corresponding to fine sand, medium sand, and coarse sand, respectively. 
Clay and silt is assumed to flocculate to form particles that display settling behavior identical to 
that of fine sand.  

EROSION AND DEPOSITION 

If the turbulent flow has not reached its capacity to suspend and transport sediment and if the 
flow is sufficiently rapid to erode the base, we allow for erosion and suspension of the resulting 
eroded particles.  At present the erosion model is very simple. Since our interest is capturing the 



most salient aspects of the global Flood cataclysm in which water velocities reach several tens of 
meters per second, we neglect erosion processes at low water velocities and instead focus on 
cavitation-driven erosion which occurs at higher water velocities and results in extreme erosion 
rates. Cavitation involves the formation of water vapor and air bubbles which occurs when local 
fluid pressure drops below the vapor pressure of dissolved air (Arndt, 1981). Cavitation damage 
arises when these bubbles are carried into regions of higher pressure and implode in the vicinity 
of the water-rock interface. The pressure spikes generated by the implosion and collapse of these 
bubbles are typically on the order of several hundred MPa, or several thousand atmospheres 
(Momber, 2003). Such pressure pulses exceed the shear strength of most silicate minerals. They 
therefore damage and erode the lattices of individual crystals that comprise a polycrystalline rock 
(Momber, 2003).  
 
Whipple et al. (2000) provide the following simple expression to describe the rate ėc of surface 
degradation from cavitation erosion  
 
     ėc = E(u – ucav)q ,     (11) 
 
where E is a proportionality constant, u is the flow velocity just above the bed (assumed at height 
z = a), and ucav is a cavitation threshold velocity. Experimentally determined values for the 
exponent q as large as 7 have been reported (Murai et al., 1997).  Falvey (1990) assumes a value 
for q of 6. The cavitation threshold velocity ucav depends of the flow depth, fine sediment 
concentration, dissolved air content, and Reynolds number. Chanson (1997) observes that on 
chute spillways and bottom outlets, cavitation damage can begin to occur at clear water 
velocities of between 12 to 15 m/s. Falvey (1990) suggests that cavitation can begin to occur in 
spillways at velocities as low as 10 m/s. For crystalline bedrock with no sediment in suspension 
we choose a value for ucav of 15 m/s, a value for q of 6, and a value for E of 0.00001/(20 - 15)6 = 
6.4 x 10-10, which implies an erosion rate of 10-5 m/s or 10 microns/s for a flow velocity at of 20 
m/s at height z = a.   

For our application, we need to account for the possible presence of a high concentration of 
sediment in the proximity of the surface. We do this by scaling E by the factor (1 – 2C), where C 
= Σci(a) is the sum over all sediment classes of their volume fractions at a height z = a, with this 
sum restricted by the sedimentation treatment to be no larger than 0.5. This restriction implies 
that when the total sediment volume fraction reaches 50% at z = a, erosion ceases. For 
simplicity, we use these parameter values regardless of the flow depth and Reynolds number. 
When the bed material is sediment and not crystalline bedrock, we use the same parameters 
except that we increase E by a factor of five to account for the relative softness of the sediment. 
A test is made to ensure that all the existing sediment cover is eroded before any bedrock erosion 
occurs. We assume that cavitation degrades bedrock into a distribution of particle sizes 
corresponding to 70% fine sand, 20% medium sand, and 10% coarse sand. 

We require sediment deposition to occur when the total sediment volume fraction C exceeds the 
value 0.5. This test is performed in the time stepping process after the new time level water 
velocities have been computed and the volume fraction profiles ci for each of the sediment 
classes have been updated to account for the transport from the water motions during the 
previous time step. At that point we integrate each of the volume fraction profiles with respect to 
height z over the entire column to obtain thickness Ti in meters of suspended sediment in the 



column.  Next we apply (9) to compute the new time carrying capacity Fi of the turbulent flow 
based on the new time height h and new time friction velocity uτ  required in the Rouse 
parameter Pi.  We then test to see if the sum ΣTi/Fi over i exceeds 0.5 or not. If the sum does not 
exceed 0.5, we allow erosion to occur as described above, but only the amount of erosion needed 
to bring the sum to the 0.5 value. On the other hand, if the sum exceeds 0.5, then sediment is 
removed from suspension and deposits on the bed such that the resulting sum ΣTi/Fi is reduced to 
the value 0.5. Deposited sediment is subtracted from the suspended by sediment class according 
to the fractional amount of sediment in the class relative to the total amount in all classes in the 
layer nearest the surface.  Typically, the thickness of this bottom layer is chosen to be about one 
meter.  In terms of the total suspended sediment in the column, this weighting by the relative 
sediment concentrations near the base of the column tends to favor deposition of coarser 
sediment, as should be the case, since proportionally less coarse sediment gets lofted to the upper 
reaches of the turbulent layer.  

Following these adjustments to the class column sediment loads Ti to account for possible 
deposition or erosion, we compute the new time vertical sediment distribution for each sediment 
class consistent with equation (8). The cumulative amount of erosion and deposition as a 
function of position over the surface is tracked as the time stepping proceeds.  

EFFECT OF SEDIMENT LOAD ON TOPOGRAPHY 

It was found early in the testing the model that sediment thicknesses of several hundreds of 
meters routinely arise. When such large thicknesses were allowed to augment the original 
continent topography with no isostatic compensation whatsoever, a type of seemingly unstable 
behavior resulted. This behavior involved the formation of localized islands of sediment, 
typically a few thousand kilometers across and hundreds of meters high. This topography, in 
turn, forced the water flow to become concentrated in channels between these islands of 
sediment and for enhanced deposition to occur on top of the adjacent islands where the flow 
depths and velocities were small. The higher the islands grew, the stronger this tendency became. 
A simple remedy for this apparent pathology was to include some degree of compensation to 
allow the basement to subside in response to the sediment load above it.  The compensation 
scheme chosen provides 10% compensation for loads less than 100 m, compensation increasing 
to 50% for a load of 500 m, and a 90% compensation for the portion of load in excess of 500 m.  
Symmetrical compensation is implemented for the negative loads produced by material removed 
by bedrock erosion.  

Such nearly instantaneous compensation was found to suppress the unexpected behavior in an 
effective manner.  However, the behavior may well not be pathological but rather may actually 
be reflecting physical reality. As such, it clearly merits further study. This is especially so given 
that the process yields more vigorous localized water flow, more intense erosion, and greater 
volumes of sediment. However, such further investigation will be deferred until later and is 
considered beyond the scope of this present paper.  

COMPUTING THE TIME-DEPENDENT WATER FLOW 

To model the water flow over the earth we utilize the so-called shallow water equations applied 
to a rotating sphere.  By shallow water it is understood that the water depth is everywhere small 
compared to the horizontal dimensions of interest.  The ocean basins on today’s earth have mean 



depths of about four kilometers while, by contrast, our computation grid for the earth’s surface 
has grid point spacing of 100 km or more.  The expected water depths over the continental 
regions where our main interest lies are yet smaller than those in the ocean basins.  Therefore the 
shallow water approximation is an appropriate one for this problem, one that allows the water 
flow over the surface of the globe to be treated in terms of a single layer of water with laterally 
varying thickness. What otherwise would be an expensive three-dimensional problem now 
becomes a much more tractable two-dimensional one. 

The shallow water equations on a rotating sphere may be expressed (Williamson et al., 1992, p. 
213) 

        dh/dt  =  - h∇•u                                                        (12) 

and       du/dt  =  - f k x u  -  g∇ h† ,     (13) 

where h is water depth, u is horizontal velocity (on the sphere), f is the Coriolis parameter (equal 
to 2Ω sin θ for rotation rate Ω and latitude θ), k is the outward radial unit vector, g is 
gravitational acceleration, and h† is the height of the free surface above some spherical reference 
surface.  Here it is assumed that the water is homogeneous in composition, incompressible, and 
invicid. If ht denotes topography on the sphere, then h† = h + ht.  The d/dt operator is the 
material or substantial or co-moving time rate of change of an individual parcel of fluid.  The ∇ 
operator is the spherical horizontal gradient operator and the ∇• operator is the spherical 
horizontal divergence operator.  Symbols in bold font correspond to vector quantities. Equation 
(12) is an expression of the conservation of mass, while equation (13) is an expression of the 
conservation of linear momentum. As mentioned above, this two-dimensional formulation in 
terms of a single layer in the radial direction is appropriate when the water depth is small in 
comparison to the important horizontal length scales. 

In our problem the water depths above the continental regions are much smaller compared to 
those in the oceanic regions, and in these continental regions where the water is shallow we 
expect strong turbulence.  Therefore, the assumption that the flow is invicid is not an appropriate 
one, and we need to account for the strong drag that occurs at the continent-water interface.  A 
simple means for doing this is to add a bottom friction term on the right hand side of equation 
(13) of the form -βu/(h+1), where β is a scaling parameter with units of m/s.  Because the terms 
in equation (13) have dimensions of force per unit mass, this drag term requires the division by 
water depth h to be consistent. The addition of 1 to h in the denominator is to prevent the overall 
term from becoming excessively large as the water depth approaches zero. It is also common in 
ocean models to include in the momentum equation a so-called eddy viscosity term that seeks to 
represent the effects of turbulence on scales not resolved by the computational grid.  The 
simplest such formulation is a term proportional to the 2-D Laplacian operator∇ 2 = ∇•∇ on the 
sphere applied to the velocity field, that is, a term of the form γ ∇ 2u, where γ is a scaling 
parameter with units m2/s. Note that γ depends on the grid resolution. Typical values are 1x10-3 
for β and 2x10-11 for γ  when the grid spacing is 120 km.  Adding these two terms to the right 
hand side of the momentum equation (13) yields 

     du/dt  =  - f k x u  -  g∇ h† - βu/(h+1) + γ∇ 2u ,   (14) 



Note that in continental regions the water depth can decrease to zero. We therefore constrain the 
water depth h always to be non-negative and the water velocity u to be zero when h is zero. We 
also constrain the right hand side of equation (14) to be zero when h is zero.  

These equations are solved in discrete fashion on a mesh constructed from the regular 
icosahedron as shown in Fig. 1.  The mesh has 40962 nodes and the spacing between nodes is 
about 120 km.  A separate spherical coordinate system is defined at each node such that the 
equator of the system passes through the node and the local longitude and latitude axes are 
aligned with the global east and north directions.  This approach has the advantage that the 
coordinates are almost Cartesian and only two (tangential) velocity components are needed.  A 
semi-Lagrangian formulation (Staniforth and Cote, 1991) of equations (12) and (14) is used 
which involves computing the trajectories during the time step that end at each node.  Values for 
h and u at the beginning of the time step at the starting point of each trajectory are found by 
interpolating from the known nodal values at the beginning of the time step.  Changes in h and u 
along the trajectory are computed using (12) and (14).  This Lagrangian-like method eliminates 
most of the numerical diffusion that is associated with Eulerian schemes.  Second-order accurate 
interpolation is used to find the starting point values of the trajectories.  This formulation using 
the icosahedral mesh has been carefully validated using the suite of test problems developed by 
Williamson et al. (1992). It also forms the basis for the global weather forecast model known as 
GME developed in the late 1990’s by the German Weather Service which in now used by more 
than 20 other nations (Majewski, et al., 2002).  

HORIZONTAL ACCELERATIONS DRIVING THE WATER FLOW 

The large lateral extent that characterizes a significant fraction of the continental Paleozoic and 
Mesozoic sediment layers appears almost certainly to require forcing acting coherently over 
large spatial scales. What are the candidate mechanisms that could accelerate the water covering 
much of the earth in a manner that would cause sheets of water, coherent on large spatial scales, 
to sweep over the continent regions at speeds of many tens of m/s? One possibility I considered 
was the torque and accompanying angular accelerations exerted by a planetary body if it passed 
close to the earth. Upon running the numbers, however, I concluded that such effects would be 
small compared with those associated with the tide that a close planetary encounter also would 
generate. The gravitational potential W of the tide caused by the close encounter of a body of 
mass m that comes within a distance R from the center of the earth is given by (Stacey, 1977, 
p.92) 

     𝑊 =  𝐺 𝑚𝑎2
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2
� ,    (15) 

where G is the universal gravitational constant, a is the earth’s radius, and ψ is the angle between 
a given point on the earth’s surface and the line connecting the center of the earth and the center 
of the passing body. The height htd of the tide is given by htd = W/g, where g is the gravitational 
acceleration at the earth’s surface. Given that g = Gme/a2, where me is the earth’s mass, we can 
express the tidal height as 

                              ℎ𝑡𝑑(𝜓) =  𝑚𝑎4
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The tidal height is maximum when ψ = 0. For a specified maximum tidal height hmax, we observe 
that 

 𝑅 = � 𝑚𝑎
𝑚𝑒ℎ𝑚𝑎𝑥

�
1/3

𝑎     (17) 

Note that from (16) the tidal minimum is -0.5hmax. 

AN ILLUSTRATIVE CASE 

To illustrate the global sediment patterns this treatment produces we choose a simple geometry 
of a single circular continent, centered at the equator and zero degrees longitude, covering 38% 
of the earth’s surface. The oceanic region surrounding the continent is taken to have a uniform 
height of -4000 m relative to the mean sea level. The height of the continent at its center is 150 m 
relative to mean sea level and smoothly decreases to -24 m at its edge.  Initially the water is at 
rest with its surface at sea level. The continent surface is assumed everywhere to consist of 
crystalline bedrock.  At the beginning of the calculation, it is assumed that a body with a mass at 
least 0.3% of that of the earth makes a near approach across a point at (90°E, 30°N) so as to raise 
a 2500 m high tide at that location and also 180° away on the opposite side of the earth.  If the 
body has a mass exactly 1% of that of the earth, from (17) the distance R at closest approach is 
2.94a, or 18,740 km from the earth’s center. This distance is comfortably beyond the Roche 
limit. The earth’s gravity acting on the tidal displacements generates water flow with speeds 
exceeding 270 m/s. We note that by comparison the moon’s mass is 0.0123 times that of the 
earth. 

Sediment generated from the resulting bedrock erosion is suspended in the turbulent water that 
quickly spreads across the continent surface.  Wherever the suspended sediment load exceeds the 
carrying capacity of the turbulent flow, sediment deposition occurs.  Once a sediment layer is 
present, it is vulnerable to being eroded, suspended, and transported before being re-deposited 
elsewhere. Bedrock erosion and sediment deposition generate topographical relief on the 
continent surface, relief that also affects the pattern of water flow.  These highly dynamical 
processes continue until friction between the moving water and the earth’s surface dissipates the 
gravitational potential energy of the tide and the water speeds become too small to drive the 
strongly erosive turbulent water flow any longer. 

Figures 2-5 provides four snapshots, spaced 12 hours apart, from the beginning of the calculation 
showing respectively (i) the instantaneous thickness of sediment suspended by the turbulent 
flow, (ii) the net amount of sediment remaining on the surface as a result of the ongoing 
processes of deposition and erosion, (iii) the cumulative bedrock erosion, and (iv) the topography 
of the continental surface as erosion and deposition and isostatic compensation jointly act to alter 
it. Peak water speeds over this two-day interval range from about 270 m/s down to 100 m/s, far 
beyond the cavitation onset value of 15 m/s.  The turbulent surges of water that sweep across the 
continent during this interval are of sufficient depth and speed to suspend more than 100 meters 
of sediment in certain regions and to transport it for thousands of kilometers. However, drag 
from the stationary continent surface on the moving water dissipates its kinetic energy, especially 
when it begins to become shallow. Rapid deposition then occurs under those conditions.  The 
four snapshots of Figure 3 show how dynamic these processes are and how rapidly sediment can 
deposit and accumulate. In this illustrative case most of the erosion occurs along the margin of 



the continent where surges from the ocean basin impinge upon the continent. Given the strength 
of the turbulent flow, this sediment is efficiently transported far into the continent interior.  
Erosion and deposition also alter the topography, which in turn affects the flow and the flow’s 
sediment carrying capacity. 

Figure 6 provides a more detailed picture of the suspended and deposited sediment separated into 
the three assumed sediment classes.  As mentioned earlier we assume that the erosional 
processes, especially cavitation, reduce crystalline bedrock into a mixture of relatively fine 
particles, 70% with a mean diameter of 0.063 mm corresponding to that of fine sand, 20% with a 
mean diameter of 0.25 mm corresponding to medium sand, and 10% with a mean diameter of 1 
mm corresponding to coarse sand.  Figure 6 displays the lateral distribution of suspended 
sediment for each size class at a time of 1 day. It also shows the lateral distribution of the 
deposited sediment by size class at this same time.  Coarse particles have a much higher settling 
velocity than fine particles and hence are more difficult to suspend and also are the first to fall 
from suspension as the flow velocity decreases.  These coarse particles therefore tend to be 
deposited closer to their source. 

The suspended sediment distribution, net cumulative deposited sediment distribution, cumulative 
erosion distribution, and continent topography at a time of 5 days are displayed in Figure 7. A 
significant fraction of the continental area is now blanketed with sediment, including some 
regions which earlier had experienced large amounts of bedrock erosion. The total cumulative 
amount of erosion is sufficient to cover the continent with sediment to an average depth of 157 
m. The peak velocity of the water flow is now 92 m/s, and the average thickness of suspended 
sediment is 4.8 m. 

DISCUSSION 

The main purpose of this paper is to describe this initial attempt to realize a numerical model for 
the primary erosion, sediment transport, and deposition processes that operated during the 
Genesis Flood to generate today’s fossil-bearing sediment record. A key aspect of the model is 
the application of the equations for open channel turbulent flow developed and utilized widely in 
the hydraulic engineering and marine science communities. The range of validity of these 
equations appears to include the regime of higher velocities and water depths expected in a 
continent-scale flood. However, it is important to recognize that these equations describe only a 
subset of the spectrum of transport, deposition, and erosion mechanisms that occurred during the 
Flood. The open channel flow equations, for example, do not capture the physics of submarine 
mud flows and debris flows. Nonetheless, it is my personal conviction that a majority of the 
sediment erosion, transport, and deposition during the Flood must have involved rapidly flowing 
turbulent water. In other words, while transport by turbulent water certainly does not account for 
all aspects of the Flood sediment record, in my assessment it likely must represent the dominant 
transport mechanism. 

Another key aspect of the model described in this paper is the reliance on cavitation for the high 
rates of erosion implied by the Flood record. While application of the equations describing open 
channel turbulent flow to the scale of the global Flood seems eminently justifiable, limitations in 
the observations as well as in the theory that undergird the current understanding of cavitation 
processes suggest the need for much more caution when extrapolating cavitation to conditions 
that may have prevailed during the Flood.  Most of the relevant observations and experiments 



concern cavitation damage to concrete spillway structures of large dams (e.g., Falvey, 1990; 
Chanson, 1997). The discovery that cavitation can be usefully applied to rock drilling has 
prompted laboratory studies relating to these applications (e.g., Momber, 2003), so more 
experimental data for the regime of extremely high water velocities and associated cavitation 
rates may be forthcoming.  
 
In regard to the role of cavitation in natural bedrock erosion, the literature is meager. Whipple et 
al. (2000) include cavitation along with plucking, abrasion, and solution in their analysis of 
fluvial bedrock erosion processes. While they acknowledge in their abstract that “new analysis 
indicates that cavitation is more likely to occur in natural systems than previously argued”, 
nevertheless they add that “direct field evidence for cavitation erosion, however, is lacking.”  In 
any case, we do utilize their equation (13), which is our equation (11), for the rate equation we 
apply for cavitation erosion. We note, however, that the authors express caution and add the 
qualification, “despite a vast and rapidly growing literature, at present we are unable to provide a 
more robust scaling of cavitation wear.”  
 
The most crucial term in (11) is the exponent q, which several authors put in the range of 5-7. 
This means that the cavitation erosion rate is extremely sensitive to the water speed u once it 
exceeds the cavitation threshold ucav. For example, with q equal to 6, doubling the difference 
between u and ucav increases the cavitation erosion rate by a factor of 64. The range for q 
between 5 and 7 does seem to be based on reliable observations. On the other hand, the 
multiplicative factor E in (11) is not that well constrained by experimental data. Falvey (1990, p. 
34) mentions an experiment in which a 13 mm hole was produced in concrete over a period of 3 
hours by a 30 m/s jet, but almost no details of the experiment are provided. These numbers 
suggest an erosion rate of 1.2x10-6 m/s. However, in the context of mentioning the experiment 
Falvey cautions the reader, “Presently, correlations have not been developed that quantify the 
amount of damage, of a given material, for a specified amount of cavitation.” More recently 
Momber (2003) reports experimental work to measure relative rates of cavitation erosion for 
various types of rocks and concrete using a cavitation chamber. Crucial details of the experiment 
are not included in the paper. Nevertheless, using erosion rates provided in mg/s and estimating 
the area of damage from the photographs in the paper, one infers erosion rates for granite and 
rhyolite on the order of 4x10-5 m/s. The point here is that there is a moderate level of uncertainty 
in the value assumed for the parameter E (10-5 m/s for a water speed of 20 m/s) in the cavitation 
portion of the model. 
 
One of the most important issues that emerges from the illustrative calculation is that the average 
depth of sediment, about 150 m, eroded from and deposited upon the continent represents only a 
small fraction of Phanerozoic sediment we actually observe on the continents today. Moreover, 
the vast majority of the erosion, transport, and deposition unfolds in less than five days’ time. 
Although there is some leeway in the choice of the magnitude of the tide and perhaps in the 
value of E in the cavitation erosion rate, there does not seem to be a way to escape the conclusion 
that a single giant tide induced by the near approach of a moderate-sized extraterrestrial body 
simply cannot account for the entire fossil-bearing sediment record. The tidal amplitude is 
restricted by the amount of water in the oceans and also limited by a plausible maximum value 
on water velocity. The duration of its effects also seems to be too brief to square with the 
description provided in the Genesis account. 



 
However, some important clues for possibly resolving these issues are found in the sediment 
record itself. A striking characteristic of the Phanerozoic continental sediment record is that it is 
organized into a few globally extensive, unconformity-bounded packages, known as mega-
sequences. The concept of globally synchronous unconformities, presumably produced by 
dramatic eustatic lowering of sea level, together with the remarkable preservation of such global 
unconformities across a continent was introduced by Lawrence Sloss in 1963.  Sloss (1963) 
identified six mega-sequences which he named Sauk, Tippecanoe, Kaskaskia, Absaroka, Zuni, 
and Tejas, draped the North American craton, as depicted in Figure 8. He also showed that 
craton-wide unconformities separate these massive packages of sediment from one another.  It 
has since been verified that this pattern of six unconformity-bounded mega-sequences is indeed 
global in extent. Uniformitarian earth scientists have inferred that this pattern is a consequence of 
the rise and fall in eustatic sea level.  The mechanism they generally propose to cause such 
global sea level variation is a fluctuation in the rate of seafloor spreading, which alters the 
average temperature of the ocean lithosphere and therefore the volume of the ocean basins and 
hence sea level. But gradual changes in eustatic sea level seem woefully inadequate to account 
for the craton-wide unconformities, even in a uniformitarian framework.  In the context of the 
Genesis Flood a catastrophic explanation is obviously required. 
 
The sort of water flow that emerges in the illustrative case described above appears to be 
consistent with what would be required to produce one of sedimentary mega-sequences, 
especially the continent-wide erosional unconformity at its base.  Certainly, giant tidal surges 
with flow velocities exceeding 200 m/s represent staggering erosive power, power sufficient 
even to reduce mountain belts to smooth surfaces.  These numerical results therefore seem able 
to account for one of the most astonishing features of the sedimentary record, namely, the craton-
wide smooth unconformity surfaces separating the mega-sequences.  In addition, the general 
pattern of sediment fining upward through each mega-sequence, that is, generally progressing 
from sand, to silt, to clay, is precisely what should be expected as the water masses lose their 
kinetic energy and the eroded particles settle out of suspension.   
 
I therefore cautiously propose a scenario of multiple close approaches by the same body in a 
highly eccentric orbit, with each close approach raising a tide on the order of 2500 m high. Based 
on the prominence of six mega-sequences in the Phanerozoic record, I explored the possibility 
that there might have been exactly six close approaches. To be able to raise a tide on the order of 
2500 m and also to remain beyond the Roche limit at closest approach, the mass of body must 
exceed about a fourth the mass of the moon. Of course, the smaller the mass of the body, the 
easier it is for the earth temporarily to capture it. If the body made only six close approaches with 
the earth, then presumably an interaction with some other body caused it subsequently to break 
free of the earth’s gravitational dominance.  
 
What might the time interval have been between the tidal pulses?  Rather arbitrarily I chose an 
interval of seven days, such that six tidal pulses fit within the first 40 days of the Flood 
cataclysm. I assumed that the geometry of the orbit of the body as well as its phase relative to the 
rotating earth were identical for all six tidal pulses. Figure 9 shows snapshots of the total 
suspended sediment, the net cumulative deposited sediment, the cumulative bedrock erosion, and 
the topography at a time of 30 days after the onset of the first pulse. This snapshot is at two days 



after the onset of the fifth tidal pulse. At a time of five days after the sixth pulse and 40 days after 
the onset of the first pulse, the average amount of sediment blanketing the continent is 680 m. In 
this simple scenario, the first pulse generates an average of 157 m of sediment, and subsequent 
pulses add about 100 m each. This comes within about a factor of two of the amount of 
Phanerozoic sediment we actually observe. 
 
Without debate, this is a speculative scenario. Nevertheless, the mega-sequences, so prominent in 
the sediment record, particularly the global erosional unconformities that divide one mega-
sequence from the next, are features that cry out for explanation. I therefore meekly offer this 
scenario as a candidate attempt to account for these observations. 
 
SUMMARY AND CONCLUSION 
 
This paper presents a beginning attempt to model numerically the primary erosion, transport, and 
sedimentation processes that occurred during the Genesis Flood to account for a large fraction of 
the continental fossil-bearing sediment record. It utilizes standard theory for open channel 
turbulent flow in the suspension, transport and deposition of sediment. It assumes that cavitation 
is the primary agent responsible for bedrock as well as sediment erosion and uses the standard 
scaling for cavitation erosion rate as a function of water speed. The model treats the water on the 
earth’s surface in terms of a single layer of water with variable bottom topography, an 
approximation known as the shallow water approximation. It uses a computational grid 
consisting of almost equal area triangles covering the spherical surface. It utilizes a semi-
Lagrangian scheme, a scheme with very little numerical diffusion, for horizontal transport of 
momentum, water, and sediment. As a place-holder in this study, water motion is driven by a 
large tide raised by the near approach of a planet-sized body coincident with the onset of the 
Flood. The gravitational potential energy associated with this tide is dissipated by friction 
between the moving water and the solid earth beneath, mostly in continental regions where the 
water depths are small. 
 
A simple case, which assumes a single circular continent covering 38% of the earth, with the 
continent surface consisting entire of crystalline bedrock and slightly submerged by water around 
its perimeter, is used to illustrate how the model behaves. Although the water initially is at rest, 
accelerations from the giant tidal perturbation quickly lead to water velocities of 270 m/s and 
more, with high levels of turbulence, intense cavitation erosion, and sediment suspended and 
transported for thousands of kilometers, as surges of water rush into the continent interior. The 
flow pattern becomes more complex as sedimentation and erosion alter the originally smooth 
topography and surges interact with one another.  These processes continue, with accumulation 
of an increasing volume of eroded sediment with time blanketing the continent in a complex 
pattern, until bottom friction dissipates most of the tidal energy. In this particular run, an average 
of about 150 m of sediment covers the continent after only 5 days.  The average is over the entire 
continent, including the eroded portions. The case shows that the numerical treatments work as 
intended and that plausible parameter choices leave a significant blanket of sediment over much 
of the continental surface, most of which remains above the mean sea level. When that initial 
case of a single tidal pulse is extended to include five identical additional pulses spaced seven 
days apart, then the total sediment volume approaches what is actually observed in the 
Phanerozoic record. 



 
It is to be noted that the cases described in this paper do not include any initial continental 
topography apart from a slightly domed surface, nor any dynamic topography arising from 
tectonic or volcanic/magmatic processes apart from modest isostatic adjustment from erosion 
and sediment load, nor any easily eroded sediment initially present on the continental surface, 
nor any dynamic changes in the depth of the ocean basin, nor any changes to the spatial 
distribution of the continental blocks, nor any motions of the deposited sediments due to gravity-
driven debris flows, nor any effects of chemically precipitated sediment material, nor any 
contributions from plucking or suspended load abrasion to bedrock erosion, nor any of a much 
longer list of processes that undoubted affected the sediment distribution in significant ways. 
Moreover, there are a multitude of possibilities for the choice of direction for the fly-by of the 
extraterrestrial body; each yields a different time history of horizontal accelerations, some 
significantly so.  The point here is that this numerical model is a beginning framework that can 
be augmented and applied to address an immense spectrum of issues relating to the Flood. 
Hopefully, many colleagues, especially younger ones, will apply it to specific topics they have a 
passion and calling to explore.     
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FIGURES 
 

          
 
Figure 1. Computational grid used in illustrative case.  Constructed from the regular 
icosahedron, this grid provides an almost uniform discretization of the spherical surface.  It has 
40962 cells with an average cell width of about 120 km for the surface of the earth. 
 
  



 
 
Figure 2. Snapshots from the illustrative case of the solid equivalent thickness of suspended 
sediment (sum over all sediment classes) at (a) 0.5 day; (b) 1 day; (c) 1.5 days; and (d) 2 days. 
 
  



 

 
 
Figure 3. Snapshots from the illustrative case of the net cumulative thickness of deposited 
sediment (sum over all sediment classes) at (a) 0.5 day; (b) 1 day; (c) 1.5 days; and (d) 2 days.  
  



 

 

 
 
Figure 4. Snapshots from the illustrative case of the cumulative bedrock erosion at (a) 0.5 day; 
(b) 1 day; (c) 1.5 days; and (d) 2 days.  
  



 

 
 
Figure 5. Snapshots from the illustrative case of the continent surface topography at (a) 0.5 day; 
(b) 1 day; (c) 1.5 days; and (d) 2 days. Note that the height scale changes with time. 
  



 

 

 
 
Figure 6. Snapshot at a time of 1 day from illustrative case: (a) suspended fine sand; (b) 
suspended medium sand; (c) suspended coarse sand; (d) cumulative deposited fine sand; (e) 
cumulative deposited medium sand; (f) cumulative deposited coarse sand. Amplitudes of the 
plots are scaled to match the 70:20:10 volume ratios for the three particle size classes produced 
by bedrock erosion. 



  
 
Figure 7. Snapshot at 5 days from the illustrative case: (a) suspended sediment (sum over 
sediment classes); (b) net cumulative deposited sediment (sum over sediment classes); (c) 
cumulative bedrock erosion; and (d) topography. Note that, except for the suspended sediment 
plot, the scale maxima differ from those of Figures 2-5. 

  



 
 
Figure 8. Sloss (1963) diagram of unconformity-bounded mega-sequences in North America.  
Dark areas represent gaps in the stratigraphic record, presumably due to either non-deposition or 
erosion.  White and stippled areas represent sediment. Alternation between white and stippled is 
used to distinguish one mega-sequence from the next. 
  



 

 

 
 
Figure 9. Snapshot at 30 days from the illustrative case: (a) suspended sediment (sum over 
sediment classes); (b) net cumulative deposited sediment (sum over sediment classes); (c) 
cumulative bedrock erosion; and (d) topography. This snapshot is at two days after the onset of 
the fifth tidal pulse. Note that, except for the suspended sediment plot, the scale maxima differ 
from those of Figures 2-5. 
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