
Notably, however, our work discovered an increased
protein-mRNA concordance in breast tumors as a novel
disease characteristic and prognostic factor that is associ-
ated with molecular subtypes, aggressiveness, and inferior
patient survival.
To the best of our knowledge, a relationship between

protein and mRNA abundance as a prognostic marker in
cancer has not been previously reported. Concordances
between protein-mRNA pairs in breast cancer cell lines
have been examined, and a mean correlation score of ~
0.5 for 94 pairs can be estimated from the study by

Kennedy et al. [7]. A more recent study using reverse
phase protein arrays reported a mean protein-mRNA
correlation score of ~ 0.45 for key cancer proteins across
several hundred cell lines and 0.35 for 47 breast cancer
cell lines [31], which is comparable with the results from
other cell-based studies [27, 32]. Thus, in cultured
cells, the transcriptome is a moderate predictor of the
proteome. TCGA/CPTAC investigators reported a mean
protein-mRNA concordance score of 0.39 for breast
tumors and 0.47 for colorectal tumor [13, 16]. The lower
average concordance in breast tumors in TCGA/CPTAC

Fig. 5 Global protein-mRNA correlations across breast tissues and their association with tumor characteristics. a Density plot for global Spearman
correlation between protein and mRNA pairs across tumors (n = 59; 5677 protein-mRNA pairs) and adjacent non-cancerous tissue (n = 38; 3316
pairs). Mean global correlation coefficients are significantly different between tumor and adjacent non-cancerous tissue (P < 2.2 × 10−16, Wilcoxon
rank sum test). b Concordance between protein and mRNA pairs is associated with discrete pathways in KEGG, e.g., protein processing and
metabolism-related pathways. Protein-mRNA pairs for these pathways tend to show significantly increased concordances. Shown are the 10
highest ranked KEGG pathways that are enriched for high concordance protein-mRNA pairs. Multiple test-adjusted P values from the Kolmogorov-Smirnov
test. c Protein-mRNA correlation for all proteins in tumors (“proteins,” 5677 protein-mRNA pairs), for tumor proteins with significant differences in
abundance between tumor and adjacent non-cancerous tissue (“tumor signature,” n= 2258 pairs), and for basal-like tumor proteins with significant
differences in abundance between tumor and adjacent non-cancerous tissue (“basal-like signature,” 159 pairs). Basal-like signature protein-mRNA pairs have
the highest concordance. Definition of the signatures is described in the “Methods” section. d Concordance between protein and mRNA levels in breast
tumors is associated with the predicted stability of proteins and mRNAs. Protein-mRNA pairs consisting of a protein and mRNA that are both stable have
the highest mean concordance
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and our study could be the result of tumor heterogeneity
and variations in technology or could be due to the dif-
ferences in growth rates between breast and colorectal
cancer, as our data show that protein-mRNA concord-
ance in breast tumors is linked to proliferation. The
proteogenomic characterization of TCGA/CPTAC colorec-
tal and breast tumors found, as we did, that genes encoding
metabolic functions tend to show high protein-mRNA
correlations [13, 16], indicating enhanced protein-mRNA
coupling in cancer metabolism. This finding indicates
that cancer cells require a stricter regulation of their
metabolism to survive by linking transcription to immedi-
ate translation.
Others examined the proteome of breast cancer and

characterized disease subtypes [11–13] or engaged in

biomarker discovery [5, 10, 33]. In agreement with the find-
ings by Geiger et al. [5], we also noticed that two candidate
prognostic markers, IDH2 and CRABP2, are aberrantly up-
regulated proteins in breast cancer including basal-like tu-
mors (Additional file 7: Table S5). In contrast, few studies
evaluated whether the cancer proteome provides signatures
for classification into disease subtypes. In colorectal tumors,
proteomic signatures described disease subtypes that partly
overlapped with the transcriptome-defined subtypes for this
disease [16], while Tyanova et al. [12] reported that hier-
archical clustering of breast tumors based on protein ex-
pression shows high diversity between tumor samples and
no clear separation into the previously reported molecular
subtypes [1–4]. In their study, the proteome separated tu-
mors into subgroups enriched for certain subtypes. We

Fig. 6 Protein abundance profiles separate breast tumors into two groups with greatly different patient survival. a Consensus matrix plot of NMF
clustering for 59 breast tumors based on protein abundance levels in these tumors. Two groups of tumors emerged. Group 1 represents tumors
enriched for the basal-like subtype (P < 0.01, Fisher’s exact test) while group 2 represents tumors enriched for the luminal A subtype (P = 0.03).
Myc signaling was the strongest classifier for these two tumor groups (P < 1 × 10−8, Fisher’s exact test); most tumors in group 1 contained a Myc
activation signature. For analysis, protein counts were normalized and log transformed, and consensus matrices were computed at K = 2–7. NMF
class assignment for K = 2 was the most robust. The consensus index for each pair of samples is represented by a color gradient from white (0%)
to red (100%) in the consensus matrix. b Enrichment pattern for transcription factor binding sites in genes that encode differently expressed
proteins between tumor groups 1 and 2. Group 1—upregulated proteins are commonly encoded by genes with a predicted Myc binding motif,
highlighted in red bars. Different bars represent different Myc binding motifs. GSEA enrichment score is captured by the blue dots. c Kaplan-Meier
survival analysis comparing tumors in group 1 with tumors in group 2. Survival of patients in group 1 was significantly shorter than the survival of
patients in group 2 (log-rank test, P = 0.027; HR = 2.65, 95% CI 1.08–6.51, using Cox regression)
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observed that the proteome separates human breast tumors
into two main clusters with different survival outcomes,
where one cluster was enriched for basal-like and the
other for luminal tumors. Yet, further analyses showed
that a Myc activation signature in breast tumors [19, 28]
was the strongest classifier for these two tumor groups in
our study, indicating a major influence of Myc signaling
on the proteome in breast cancer. This observation is con-
sistent with both the known function of the MYC onco-
gene as a regulator of ribosome biogenesis and enhancer
of protein synthesis [29, 30] and the proteogenomic
characterization of breast tumors by the TCGA/CPTAC
Consortium [13]. In the CPTAC study, K-means
consensus-based clustering with global proteome data
yielded a separation of tumors into three groups, termed
basal-enriched, luminal-enriched, and stromal-enriched.
While our study using NMF clustering did not distinguish
stromal-enriched tumors as a third proteomic subtype,
both studies associated the basal-enriched proteomic
subtype with Myc activation.
Characterization of breast cancer with either proteome

or transcriptome data may yield different insights into
tumor biology. Proteins that are upregulated in tumors
may associate with processes that are very different from
those described by the analysis of upregulated mRNAs.
These differences may be partly explained by mRNA
properties, such as 3′UTR shortening, leading to increased
protein expression without upregulation of mRNA expres-
sion in tumors, as our data show. We examined the poten-
tial differences between a proteome and transcriptome
analysis using tumor-adjacent non-cancerous tissue pairs
and jointly examined differentially expressed proteins and
mRNAs and their pathway association. Recent studies have
demonstrated the advantage of pathway-based analysis in
assessing tumor biology [34, 35]. Our approach showed that
upregulated proteins specifically cluster in processes related
to protein synthesis and degradation and disease me-
tabolism. Proteins, but not mRNA, captured ribosome
synthesis and function as a disease-associated process
and indicated an activation of infection-related signal
pathways in basal-like and triple-negative tumors. The latter
is of interest because currently, an infection-related process
has not been linked to this subtype. Lastly, HER2-enriched
tumors were characterized by a distinct downregulation of
proteins in the coagulation cascade, which was not seen on
the mRNA level. Thus, the analysis of the proteome can
yield insights into tumor biology that are missed by a tran-
scriptome analysis.

Conclusions
We applied an integrated analysis of proteomic and tran-
scriptomic data that we jointly collected from human breast
tumors and adjacent non-cancerous tissues. Our study
revealed that the proteome describes differences between

cancerous and non-cancerous tissue and disease subtypes
that are not captured by the transcriptome. Proteins, but
not mRNA, linked infection-related pathways to basal-like
and triple-negative breast cancer. We also uncovered
cross-omics correlations that we validated in additional
datasets. Notably, our work describes an increased protein-
mRNA concordance in breast tumors as a disease char-
acteristic that is associated with molecular subtypes,
aggressiveness, and inferior patient survival.
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