
Cedarville University Cedarville University 

DigitalCommons@Cedarville DigitalCommons@Cedarville 

Scholars Symposium The 2023 Symposium 

Assassins App Assassins App 

Corrissa Smith 
Cedarville University, corrissasmith@cedarville.edu 

Hannah Oaisa 
Cedarville University, hannahoaisa@cedarville.edu 

Dilean Munoz 
Cedarville University, dileanmunoz@cedarville.edu 

Henry Anderson 
Cedarville University, henryanderson@cedarville.edu 

Follow this and additional works at: https://digitalcommons.cedarville.edu/rs_symposium 

Smith, Corrissa; Oaisa, Hannah; Munoz, Dilean; and Anderson, Henry, "Assassins App" (2023). Scholars 
Symposium. 9. 
https://digitalcommons.cedarville.edu/rs_symposium/2023/poster_presentations/9 

This Poster is brought to you for free and open access by 
DigitalCommons@Cedarville, a service of the Centennial 
Library. It has been accepted for inclusion in Scholars 
Symposium by an authorized administrator of 
DigitalCommons@Cedarville. For more information, 
please contact digitalcommons@cedarville.edu. 

http://www.cedarville.edu/
http://www.cedarville.edu/
https://digitalcommons.cedarville.edu/
https://digitalcommons.cedarville.edu/rs_symposium
https://digitalcommons.cedarville.edu/rs_symposium/2023
https://digitalcommons.cedarville.edu/rs_symposium?utm_source=digitalcommons.cedarville.edu%2Frs_symposium%2F2023%2Fposter_presentations%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/rs_symposium/2023/poster_presentations/9?utm_source=digitalcommons.cedarville.edu%2Frs_symposium%2F2023%2Fposter_presentations%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx
http://www.cedarville.edu/Academics/Library.aspx


t

Abstract

Assassins Mobile App
Faculty Advisor: Dr. David Gallagher

Students: Henry Anderson, Dilean Muñoz, Hannah Oaisa, Corrissa Smith
Contact Us: assassinsappbeta@gmail.com

Technical Architecture
The Assassins app is created using Flutter and Google’s Cloud Firestore

database. It consists of four main “layers”: the database (in Cloud 
Firestore), the database API (implemented in the app using the FlutterFire
library), the app objects (an in-app abstraction of the data), and the UI. 
These layers are kept as separate as possible to modularize the code.

Cloud Firestore

Cloud Firestore is a document-based database. Unlike a typical 
relational database, which stores data in tables associated by various 
unique-ids, data is stored in a hierarchical format of collections and 
documents (loosely similar to the idea of folders and files). As a result, data 
is stored in a very JSON-like format, mimicking how the app objects will 
store data. Cloud Firestore is external to the app.

Database API

Within the app’s codebase are functions that control reading and writing 
from the database. These functions ensure that data is updated in real time 
by attaching listeners to Firestore documents. When a listener is triggered, 
the database’s listener code passes the new data to app objects and pushes 
a global “update” ping to the UI. With a relational database, some sort of 
ORM (object-relational mapping) framework could have automated some 
of this API, but because we used a document-based database, we 
constructed these functions ourselves. The FlutterFire library provides 
good support for reading, writing, and listening to Cloud Firestore. 

App Objects

The app objects store all the relevant information about players and 
games. They call database API functions as necessary to read and write 
data from the database. However, because of the API’s abstraction, they 
remain agnostic as to what the database really is and how these reads and 
writes actually work.

UI

The UI is built using Flutter’s stateful widgets. These widgets are given 
the app objects (ie, games and players) they are supposed to show. The 
widgets are subscribed to a global update stream that informs the widgets 
if any app object’s data has changed. That way, the UI does not deal with 
the details of an app’s data changing—it is simply instructed to refresh the 
page.

Development and Deployment

Apple Instructions 
Step 1. Install TestFlight
Step 2. Scan QR code
Step 3. Join the beta and install the 
app!

Android Instructions
Step 1. Scan QR code
Step 2. Tap on the .apk file
Step 3. When prompted, go to 
settings and enable the installation. 
RE-ENABLE THIS SETTING LATER.
Step 4. Install app

Language

The Assassins app is built in the language Flutter, which is based on Dart. Flutter is a 
cross-platform language, meaning the app does not have to be rewritten for Apple/iOS 
and Android devices.

Development Environments

Flutter is a cross-platform language, but it still needs to be compiled for each 
platform. As the Android platform allows developers much more ease of access (iOS 
development requires a Mac computer and is much more difficult to test on a real 
device), most of our development was done in Android Studio. One member of the 
Assassins team regularly tested the developing app on iOS using Xcode. Most cross-
platform difficulties involve connecting the app to outside resources, such as the 
database and notification streams. Otherwise, there have been very few cross-platform 
problems.

Deployment

Deployment of the Assassins app is currently in its beta phase. Deploying a beta app 
to Android devices is relatively simple: an .apk file can be distributed directly to beta 
testers and installed by them. (Beta deployment can also be done through the Google 
Play Store, after the app and developer are registered). Deploying a beta app on iOS is 
much more difficult and requires an Apple developer license. To fund this license, an 
alpha version of the app was taken to Cedarville University’s entrepreneurial contest, 
The Pitch, where it won second place.

Anticipated Impact

We hope for the Assassins app to simplify the experience of playing assassins, 
making the game more accessible and streamlined. Short-duration games may 
become more common, as the app eliminates the work required to organize them. We 
believe that technology and games should be used to connect people and support real-
life interactions, rather than replace them.

The Assassins mobile app is a tool created to facilitate the popular campus game of 
Assassins, common to Cedarville University and other youth communities. In a game of 
assassins, players are assigned targets in a single, randomly ordered loop, and 
“assassinate” each other with a designated “weapon” (potentially a plastic spoon, nerf 
gun, or water gun). Once a player assassinates his target, he is assigned his former 
target’s target, and assassinations continue until only the winner remains. Assassins 
games can vary widely in duration, ranging from half an hour to several weeks. 
Traditional tools for managing game information and distributing target lists include 
spreadsheets, emails, and group messaging. As a result, creating and distributing the 
target list can be time-consuming, and short-duration assassins games are 
comparatively more work to organize and are therefore less common. To address the 
hassle in organizing games of assassins, the Assassins app keeps all game information 
on one platform and allows users to create, join, play, and moderate games of assassins. 
The app is designed using Flutter, a cross-platform language, to enable release to both 
Apple and Android platforms. It is backed by a Google Firestore database, and the back-
end code is designed with modularity in mind to make it easier to maintain and update. 
By streamlining and enhancing the management of Assassins games, this app will 
simplify the game-playing experience and make Assassins more accessible

User Interface
Wireframe

Mockups/High-Fidelity Designs

AppUser

Game

Game
Player Player PlayerPlayer

A sample of the 
database’s schema

An illustration 
of the 
app objects 
and their 
relationships

Download the Beta

Note: The app only supports sign-in with Google


	Assassins App
	

	Slide 1

