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a b s t r a c t

An effective integration method based on the classical solution of the Jacobi inversion problem, using
Kleinian ultra-elliptic functions and Riemann theta functions, is presented for the quasi-periodic two-
phase solutions of the focusing cubic nonlinear Schrödinger equation. Each two-phase solution with real
quasi-periods forms a two-real-dimensional torus, modulo a circle of complex-phase factors, expressed
as a ratio of theta functions associatedwith the Riemann surface of the invariant spectral curve. The initial
conditions of the Dirichlet eigenvalues satisfy reality conditions which are explicitly parametrized by two
physically-meaningful real variables: the squared modulus and a scalar multiple of the wavenumber.
Simple new formulas for the maximum modulus and the minimum modulus are obtained in terms of
the imaginary parts of the branch points of the Riemann surface.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The focusing cubic nonlinear Schrödinger (NLS) equation is

i pt + pxx + 2|p|2p = 0, (1)

where p(x, t) is a complex field exhibiting focusing, viz., modula-
tionally unstable, behavior. The NLS equation is a well-known and
thoroughly studied soliton equation applicable to a wide variety of
problems, in which there is a simple balance between dispersive
and nonlinear effects, ranging from shallow water waves to op-
tical communication systems, see [1] and the references therein.
The detailed study of two-phase, i.e., ultra-elliptic, solutions of the
focusing NLS equation is important for understanding the small-
dispersion limit near the gradient catastrophe [2] and, in particular,
the generation of rogue waves near the gradient catastrophe [3].
Special classes of ultra-elliptic solutions of vector NLS equations
have also been of much interest recently [4–7], including their
modulation equations [8].

E-mail address:wrighto@cedarville.edu.

The construction of N-phase or finite-gap solutions of the
integrable focusing NLS equation (1) by algebro-geometric means
has been studied extensively, a detailed history is contained in [9].
There are twomain components to the algebro-geometric method
of integration: (i) constructing a formula for the N-phase solution
using a ratio of theta functions associated with the Riemann
surface of the invariant spectral curve and (ii) satisfying the reality
conditions imposed on the initial conditions of the solution by
the real symmetry of the invariant spectral curve. The reality
conditions must be satisfied by the invariant branch points of the
Riemann surface and by the initial conditions of the moveable
Dirichlet eigenvalues of the spectral problem.

The earliest studies by Kotlyarov, Its, and Čerednik [10–13]
solved the first part of the integration problem using a classical
solution to the Jacobi inversion problem, but satisfying the re-
ality conditions remained at the level of an existence theorem.
Dubrovin, Novikov, Previato, and others [9,14–21] were able to
solve the problem of satisfying the reality conditions by studying
the problem in the context of the image of theDirichlet eigenvalues
in the Jacobi variety of the Riemann surface. However, this more

http://dx.doi.org/10.1016/j.physd.2016.03.002
0167-2789/© 2016 Elsevier B.V. All rights reserved.
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modern approach provides little information about the physically-
meaningful parameters in the solution, such as the amplitude of
the wave and the wavenumber. Tracy and Chen [22,23] charac-
terized the integration problem in a form amenable to numerical
computations, but the reality conditions were still not satisfied ex-
plicitly. Exceptions to this situation are the explicit formulas for
elliptic (one-phase) solutions of many integrable soliton equations
(see [1,24] and the references therein) and the two-phase solutions
of the sine–Gordon equation [25,26].

In this paper, the effective integration technique of Kamchat-
nov [1,24] is extended from the one-phase solution to the two-
phase solution of the focusing NLS equation. Using a classical
solution to the Jacobi inversion problem for genus-two Riemann
surfaces [27,28], a completely explicit formula for the two-phase
solution of the focusing NLS equation is obtained [29]. The new
formula for the solution is still a ratio of theta functions similar
to previously known results, but the dependence of all the param-
eters in the solution on the initial conditions is now explicit. The
integration method is effective because the reality conditions are
explicitly satisfied in terms of themodulus and thewavenumber of
the solution, and the parameters in the theta function formula for
the solution are known explicitly in terms of the branch points and
the correct initial conditions of the Dirichlet eigenvalues. More-
over, new simple formulas are obtained for themaximummodulus
and the minimum modulus of the two-phase solution in terms of
the imaginary parts of the branch points of the Riemann surface.
Surprisingly, it appears that the simple dependence on the branch
points of the Riemann surface of the maximum and the minimum
of the complex modulus of the two-phase solution of the focusing
NLS equation (1) was previously unknown in the literature until
very recently [29].

2. Lax pair of linear operators

The initial steps in the integration of the two-phase solution of
the NLS equation (1) follow the well-known pattern established
by Kotlyarov, Its, and Dubrovin [10–12,14]. The integrability of the
NLS equation is established through the equivalence of Eq. (1) and
the commutation of a Lax pair of linear eigenvalue problems,

ψx = Uψ, ψt = Vψ, (2)

where

U =


−iλ ip
ip∗ iλ


,

[.3in]V =


−2iλ2 + i|p|2 2iλp − px
2iλp∗

+ p∗

x 2iλ2 − i|p|2


,

(3)

p∗ denotes the complex conjugate of p, and λ is the spectral
parameter in the inverse spectral theory of the integrable system.

The commutation of the Lax pair of linear operators (2) implies
the NLS equation (1) in zero-curvature form

Ut − Vx + [U,V] = 0, (4)

where [A,B] = AB−BA is the usual operation ofmatrix commuta-
tion. The stationary N-phase solutions of the NLS equation are, by
definition, solutions of the stationary NLS hierarchy defined by

Ψx = [U,Ψ ], (5)

in which the solution matrix Ψ is polynomial in the spectral pa-
rameter λ. The time-dependent N-phase solutions are then ob-
tained by explicitly constructing the compatible time-dependence
of Ψ such that

Ψt = [V,Ψ ], (6)

which, in turn, implies the zero-curvature representation of the
NLS equation (4).

The commutation operators in Eqs. (5) and (6) imply that
the trace of Ψ is constant and so, without loss of generality,
constant multiples of the identity matrix may be added to Ψ ,
and we may assume that the trace of Ψ is zero. Furthermore,
the commutation structure also implies that the characteristic
polynomial of Ψ is a constant, providing integrals of motion
that enable the integration of the N-phase solutions. Therefore a
solution to Eq. (5) is constructed of the form,

Ψ =


Ψ11 Ψ12
Ψ21 −Ψ11


, (7)

so that the Lax pair of Eqs. (5) and (6) becomes

Ψ11x = −ip∗Ψ12 + ipΨ21,

Ψ12x = −2ipΨ11 − 2iλΨ12,

Ψ21x = 2ip∗Ψ11 + 2iλΨ21,

Ψ11t = −(2iλp∗
+ p∗

x )Ψ12 + (2iλp − px)Ψ21,

Ψ12t = −2(2iλp − px)Ψ11 + 2(−2iλ2 + i|p|2)Ψ12,

Ψ21t = 2(2iλp∗
+ p∗

x )Ψ11 + 2(2iλ2 − i|p|2)Ψ21.

(8)

N-phase solutions, by definition, correspond to Ψ which are
polynomial in λ. Substitution of the series

Ψ11 = 1 +

∞
n=1

fnλ−n,

Ψ12 =

∞
n=1

gnλ−n,

Ψ21 =

∞
n=1

hnλ
−n,

(9)

into the stationary equation (5), produces recursion relations for
the entries of Ψ . It can be shown that the entries of Ψ are
differential polynomials in p and p∗ [30].

3. Two-phase solutions

The previous formalism is now applied to two-phase solutions,
viz., third-degree polynomial solutions Ψ of Eq. (8). The most
general such solution is

Ψ11 = −iλ3 − ic2λ2 +


1
2
i|p|2 − ic1


λ

+
1
4
(pp∗′

− p′p∗)+
1
2
ic2|p|2 − ic0,

Ψ12 = ipλ2 +


−

1
2
p′

+ ic2p

λ−

1
4
ip′′

−
1
2
ip|p|2 −

1
2
c2p′

+ ic1p,

Ψ21 = ip∗λ2 +


1
2
p∗′

+ ic2p∗


λ−

1
4
ip∗′′

−
1
2
ip∗

|p|2 +
1
2
c2p∗′

+ ic1p∗,

(10)

where c0, c1, c2 ∈ R are constants of integration. The solution Ψ
in Eq. (10) has a real symmetry which must be satisfied so that the
potential p in the linear spectral problem of the Lax pair actually
solves the scalar NLS equation (1), instead of a complexified pair of
coupled NLS equations.

Theorem 1 (Reality Condition).

Ψ12(λ) = −(Ψ21(λ
∗))∗, (11)



18 O.C. Wright III / Physica D 321–322 (2016) 16–38

and, hence, the two roots µ1 and µ2 of Ψ21(λ) = 0 are the complex
conjugates of the two roots of Ψ12(λ) = 0. In particular,

Ψ11 = −iλ3 − ic2λ2 +


1
2
iν1 − ic1


λ+

1
4
iν2

+
1
2
ic2ν1 − ic0,

Ψ12 = ip(λ− µ1)(λ− µ2),
Ψ21 = ip∗(λ− µ∗

1)(λ− µ∗

2),

(12)

where ν1, ν2 ∈ R are real variables,

ν1 = |p|2 ≥ 0,
ν2 = i(p∗p′

− pp∗′).
(13)

In the context of water-wave applications of the NLS equation,
ν1 is the square of the amplitude of the wave, and ν2 is a constant
multiple of the spatial wavenumber. However, in the optical-
pulse setting, ν1 represents the squared modulus of the intensity
of the lightwave, and ν2 is a constant multiple of the temporal
wavenumber. The two roots µ1, µ2 ∈ C of the equation Ψ12 =

0 are analogous to the Dirichlet eigenvalues of the KdV spectral
problem and, hence, are referred to as Dirichlet eigenvalues in this
context. The solution p(x, t) of the NLS equation (1) is recovered
from the Dirichlet eigenvalues by the trace formulas.

Lemma 1 (Trace Formulas). The Dirichlet eigenvalues µ1 and µ2
satisfy the trace formulas,

µ1 + µ2 = −
1
2
i
p′

p
− c2,

µ1µ2 = −
1
4
p′′

p
−

1
2
|p|2 +

1
2
ic2

p′

p
+ c1.

(14)

Also

ν2 = −2ν1(µ1 + µ2 + µ∗

1 + µ∗

2 + 2c2), (15)

and

p′
= 2ip(µ1 + µ2 + c2),

p′′
= −2p(2µ1µ2 + ν1 + 2c2µ1 + 2c2µ2 + 2c22 − 2c1).

(16)

The evolution of the Dirichlet eigenvalues is governed by the
Dubrovin equations [14] obtained by substitution of Eq. (12)
into the second and fifth equations of (8), differentiating, and
substituting λ = µ1 or λ = µ2.

Lemma 2 (Dubrovin Equations). The Dirichlet eigenvalues µ1 and
µ2 satisfy the following system of equations,

∂µ1

∂x
= 2

Ψ11(µ1)

µ1 − µ2
,

∂µ2

∂x
= 2

Ψ11(µ2)

µ2 − µ1
,

∂µ1

∂t
= −2(µ2 + c2)

∂µ1

∂x
,

∂µ2

∂t
= −2(µ1 + c2)

∂µ2

∂x
.

(17)

The Dirichlet eigenvalues lie on trajectories in the complex
plane determined by the Dubrovin differential equations (17) and
the initial conditions. However, not all initial conditions satisfy
the reality conditions, viz., the integrals of motion of the Dubrovin
equations and the constraint that the zeros of Ψ12 and Ψ21 are
complex conjugates of each other. The allowed initial conditions,
viz., the allowed trajectories, are not knownapriori (unlike theKdV
case inwhich theDirichlet eigenvaluesmust lie on certain intervals
of the real line determined by the spectral problem), instead the

trajectories must be determined in order to construct two-phase
solutions from the Dubrovin equations.

At this juncture, we depart from the approach of Its, Kotlyarov,
Dubrovin, and others [9–21] and, instead, adopt the effective
integration method used by Kamchatnov [1,24] for one-phase
(elliptic) solutions. In this method it is observed that the Dubrovin
equations imply that theµ-trajectories of theDirichlet eigenvalues
are parametrized by the two real variables ν1 and ν2. Therefore, by
finding the algebraic dependence of the µ-trajectories on ν1 and
ν2, the reality conditions can be satisfied explicitly.

The differential equations satisfied by ν1 and ν2 come from the
x-flow and t-flow of the Lax pair for Ψ by substitution of Eqs. (12)
into Eqs. (8).

Lemma 3. The real variables ν1 and ν2 satisfy the following system of
equations,

∂ν1

∂x
= 2iν1(µ1 + µ2 − µ∗

1 − µ∗

2),

∂ν2

∂x
= 4iν1(µ∗

1µ
∗

2 − µ1µ2)− 2c2
∂ν1

∂x
,

∂ν1

∂t
=
∂ν2

∂x
,

∂ν2

∂t
= 8iν1((µ1 − µ∗

1)|µ2|
2
+ (µ2 − µ∗

2)|µ1|
2)

− 4c2
∂ν2

∂x
− 4c22

∂ν1

∂x
.

(18)

If p(x, t) is a smooth bounded quasi-periodic two-phase
solution of the NLS equation (1), then ν1(x, t) = |p(x, t)|2
must oscillate on finite intervals and, hence, it must have relative
extrema as a function of x and t . The relative extrema must
occur at critical points. Moreover, the critical points can be
characterized as distinguished points on the trajectories of the
Dirichlet eigenvalues.

Lemma 4. If p(x, t) is a smooth bounded quasi-periodic two-phase
solution of the NLS equation (1), then ν1(x, t) = |p(x, t)|2 must have
relative extrema as a function of x and t. Critical points of ν1(x, t)
occur at distinguished values of theDirichlet eigenvalues. In particular,
for ν1 > 0, Eqs. (18) imply that

∂ν1

∂x
=
∂ν1

∂t
= 0 ⇔ (i) µ1 = µ∗

1, µ2 = µ∗

2 or (ii) µ∗

2 = µ1. (19)

Theorem 2. If p(x, t) is a smooth bounded quasi-periodic two-phase
solution of the NLS equation (1), then ν1(x, t) = |p(x, t)|2 must
oscillate on an interval of non-negative values whose endpoints are
relative extrema of ν1(x, t). If ν1 > 0 and µ1 ≠ µ2, then ν1 has a
relative extremum only if µ1 = µ∗

1 and µ2 = µ∗

2 .
Proof. Lemma 4 establishes the possible locations of relative
extrema. Explicit calculation using the Dubrovin equations (17)
and (18) shows that if µ1 ≠ µ2 and (i) µ1 = µ∗

1 and µ2 = µ∗

2
or (ii) µ1 = µ∗

2 , then

∂2ν1

∂x2
∂2ν1

∂t2
−


∂2ν1

∂x∂t

2

= 256ν21Ψ11(µ1)Ψ11(µ2) ∈ R. (20)

However, if µ1 ≠ µ2 and µ1 = µ∗

2 and ν1 > 0, then

∂2ν1

∂x2
∂2ν1

∂t2
−


∂2ν1

∂x∂t

2

= −256ν21 |Ψ11(µ1)|
2 < 0, (21)

viz., there is a saddle point, instead of a relative extremum. �

It is worth noting that in order to obtain a similar result for N-
phase solutions with N ≥ 3, the solution p of the NLS equation
must be considered as a simultaneous solution of N evolutionary
flows in the integrable NLS hierarchy of equations. Only two
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conditions define the critical points of the x- and t-flows of the
solution, and these two conditions are insufficient to imply a
conclusion analogous to that of Eq. (19) onmore than twoDirichlet
eigenvalues.

4. Invariant characteristic equation

The characteristic equation of Ψ is an invariant of both the x-
flow and the t-flow of the solutions. It provides the integrals ofmo-
tion necessary to integrate the differential equations. In particular,
for the two-phase solutions, we seek the explicit construction of
the µ1 and µ2 trajectories in terms of the symmetric polynomials
of the roots of the invariant characteristic equation.

The characteristic equation of Ψ , viz., the invariant spectral
curve, as defined by Eqs. (12), is

det(iwI − Ψ ) = −w2
+ R(λ) = 0, (22)

where

R(λ) = −Ψ 2
11 − Ψ12Ψ21 =

6
i=1

(λ− λi), (23)

and it naturally defines a hyperelliptic Riemann surface of
arithmetic genus two with points P = (λ,w(λ)) ∈ C2 lying on
the complex algebraic curve K2 defined by Eq. (22). The curve K2
is a branched two-sheeted covering of the Riemann sphere with
two points over the point at infinity; it is assumed that the curve is
nonsingular, i.e., the branch points λi, for i = 1, . . . , 6, are distinct.
Let the point ∞+ be defined as the point over infinity with λ = ∞

andw(λ) = λ3+O(λ2), similarly∞
− is the point overλ = ∞with

w(λ) = −λ3 +O(λ2). The curve K2 admits the usual hyperelliptic
involution corresponding to sheet interchange,
ι : K2 → K2, ι(λ,w(λ)) = (λ,−w(λ)) (24)
and, because the coefficients of R(λ) are real, an anti-holomorphic
involution
∗ : K2 → K2, ∗(λ,w(λ)) = (λ∗, w(λ)∗), (25)
whereweuse the same symbol∗ for the involution acting onpoints
of K2, as well as for complex conjugation of complex numbers.
Note that the anti-holomorphic involution (25) leaves the sheets
of the covering of the Riemann sphere unchanged, as can be seen
by considering the action of ∗ on points in the vicinity of P+

∞
, viz.,

if λ ∈ R, then
∗ (λ,w(λ)) = (λ∗, w(λ)∗) = (λ,w(λ)). (26)
The symmetry of the curve K2 expressed in the existence of the
anti-holomorphic involution ∗ places reality conditions on the
branch points of K2, the integrals of motion of the x- and t-flows.

Corollary 1 (Real Curve). K2 must be a real algebraic curve, viz., the
branch points are either real or come in complex-conjugate pairs.

The Dubrovin equations (17) can now be integrated in the
standard way on the hyperelliptic Riemann surface [14].

Lemma 5 (Dubrovin Equations Reprised). Eq. (23) implies

Ψ11(µj) = i


R(µj), (27)

for j = 1, 2. Therefore, the motion of the Dirichlet eigenvalues is
defined on K2 by the Dubrovin equations (17),

∂µ1

∂x
= 2i

√
R(µ1)

µ1 − µ2
,

∂µ2

∂x
= 2i

√
R(µ2)

µ2 − µ1
,

∂µ1

∂t
= −2(µ2 + c2)

∂µ1

∂x
,

∂µ2

∂t
= −2(µ1 + c2)

∂µ2

∂x
.

(28)

Lemma 6. The x-flow and t-flow of µ1 and µ2 on K2 are linearized
by the Abel mapping, µ1

µ10

dµ1
√

R(µ1)
+

 µ2

µ20

dµ2
√

R(µ2)
= 4it, µ1

µ10

µ1dµ1
√

R(µ1)
+

 µ2

µ20

µ2dµ2
√

R(µ2)
= 2ix − 4ic2t,

(29)

whereµ10 andµ20 are constants of integration, viz., the initial values
for µ1 and µ2.

It is important to remember that the values of µ10 and µ20
are not arbitrary but must satisfy the algebraic reality conditions
imposed on the integrals ofmotion and, hence, on the loci ofµ1 and
µ2 by the characteristic equation (22). The explicit construction
of the real loci of the two-phase Dirichlet eigenvalues does not
appear in the earlier literature, butwill be accomplished in the next
section.

5. Integrals of motion and the Dirichlet eigenvalues

The symmetric polynomials of degree i, Σi, i = 1, . . . , 4,
of µ1, µ2, µ

∗

1, µ
∗

2 , must satisfy the following reality condition be-
cause the Dirichlet eigenvalues come in complex-conjugate pairs.

Corollary 2 (Symmetric Polynomials of the Dirichlet Eigenvalues).

Σ1,Σ2,Σ3,Σ4 ∈ R (30)

and

Σ4 = |µ1µ2|
2

≥ 0. (31)

Moreover, because quartic polynomial equations have an
explicit solution method, the algebraic constraints on the real loci
ofµ1 andµ2 can also bemade explicit. Using the invariant spectral
polynomial (22) and definition (23), the symmetric polynomials
of degree i, Λi, i = 1, . . . , 6, of λi, i = 1, . . . , 6, the branch
points of the invariant spectral curve, can be written in terms of
the symmetric polynomials of degree i, Σi, i = 1, . . . , 4, of the
Dirichlet eigenvalues µ1, µ2, µ

∗

1, µ
∗

2 .

Lemma 7 (Symmetric Polynomials of Branch Points).

Λ1 = −2c2,
Λ2 = 2c1 + c22 ,

Λ3 = −2c1c2 − 2c0 +
1
2
ν2 + 2c2ν1 + ν1Σ1,

Λ4 = −
1
2
c2ν2 − c22ν1 − c1ν1 +

1
4
ν21 + 2c0c2

+ c21 + ν1Σ2,

Λ5 = −
1
4
ν1ν2 −

1
2
c2ν21 + c0ν1 +

1
2
c1ν2

− 2c0c1 + c1c2ν1 + ν1Σ3,

Λ6 =
1
4
c2ν1ν2 − c2c0ν1 −

1
2
c0ν2 +

1
4
c22ν

2
1 + c20

+
1
16
ν22 + ν1Σ4.

(32)

Eq. (15) and the first three equations of (32) determine the three
constants c0, c1, c2, in terms of the branch points.
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Lemma 8 (Constants of Integration).

c2 = −
1
2
Λ1,

c1 =
1
2
Λ2 −

1
8
Λ2

1,

c0 = −
1
2
Λ3 +

1
4
Λ2Λ1 −

1
16
Λ3

1.

(33)

Eq. (15) and the last three equations of (32) show that loci of the
Dirichlet eigenvalues can be parametrized in terms of ν1 and ν2 by
solving forΣi, i = 1, . . . , 4.

Lemma 9 (Symmetric Polynomials of Dirichlet Eigenvalues). If ν1 >
0, then

Σ1 = −
1
2
ν2

ν1
+Λ1,

Σ2 = −
1
4
Λ1
ν2

ν1
−

1
4
ν1 +

−
5
64Λ

4
1 +

3
8Λ

2
1Λ2 −

1
4Λ

2
2 −

1
2Λ1Λ3 +Λ4

ν1

+
1
2
Λ2 +

1
8
Λ2

1,

Σ3 =
1
4
ν2 +


1
16
Λ2

1 −
1
4
Λ2


ν2

ν1
−

1
4
Λ1ν1

+

1
64Λ

5
1 −

1
8Λ

3
1Λ2 +

1
8Λ

2
1Λ3 +

1
4Λ1Λ

2
2 −

1
2Λ2Λ3 +Λ5

ν1
+

1
2
Λ3,

Σ4 =
1
8
Λ1ν2 −

1
16
ν22

ν1
−

1
16
Λ2

1ν1 +


−

1
32
Λ3

1 +
1
8
Λ1Λ2 −

1
4
Λ3


ν2

ν1

+
−

1
256Λ

6
1 +

1
32Λ

4
1Λ2 −

1
16Λ

3
1Λ3 −

1
16Λ

2
1Λ

2
2 +

1
4Λ1Λ2Λ3 −

1
4Λ

2
3 +Λ6

ν1

+
1
32
Λ4

1 −
1
8
Λ2

1Λ2 +
1
4
Λ1Λ3.

(34)

Note that Λi ∈ R, i = 1, . . . , 6, are real parameters and
ν1, ν2 ∈ R are real variables. Thus the four roots µ1, µ2, µ

∗

1, µ
∗

2 ∈

C of the quartic equation
2

i=1

(µ− µi)(µ− µ∗

i ) = µ4
−Σ1µ

3
+Σ2µ

2
−Σ3µ+Σ4

= 0, (35)

each lie on a two-real-dimensional manifold parametrized by
ν1, ν2 ∈ R. The explicit solutions for µ1 and µ2 can be found
using the standard procedure for solving quartic equations. First
the quartic polynomial in Eq. (35) is reduced by the transformation

µ = µ̂+
1
4
Σ1, (36)

so that Eq. (35) becomes

µ̂4
+ Σ̂2µ̂

2
− Σ̂3µ̂+ Σ̂4 = 0, (37)

where

Σ̂2 = −
3
8
Σ2

1 +Σ2,

Σ̂3 =
1
8
Σ3

1 −
1
2
Σ1Σ2 +Σ3,

Σ̂4 = −
3

256
Σ4

1 +
1
16
Σ2

1Σ2 −
1
4
Σ1Σ3 +Σ4.

(38)

Note that Σ1 ∈ R, so the reality condition of Corollary 2 transfers
unchanged to the shifted variables Σ̂2, Σ̂3, Σ̂4 ∈ R, and Σ̂4 ≥ 0,
because the roots of Eq. (37) still come in two complex-conjugate
pairs. Completing the square of the first two terms of Eq. (37) gives
µ̂2

+
1
2
Σ̂2

2

= Σ̂3µ̂+
1
4
Σ̂2

2 − Σ̂4. (39)

If Σ̂3 = 0, then Eq. (39) can be solved immediately to give

µ̂ =
±1
√
2


−Σ̂2 + s


Σ̂2

2 − 4Σ̂4, (40)

where s = ±1. The reality condition of Theorem 1 implies that
the shifted Dirichlet eigenvalues come in complex-conjugate pairs,
so their values are constrained and the expressions for them in
Eq. (40) can be simplified.

Corollary 3 (First Symmetric-Polynomial Constraint). Suppose ν1 >
0. If Σ̂3 = 0, then the reality condition of Theorem1, viz., theDirichlet
eigenvalues come in complex-conjugate pairs, implies that Σ̂2 ≥

−2

Σ̂4, and the explicit expressions for the Dirichlet eigenvalues fall

into two subcases.

1. If Σ̂2
2 ≤ 4Σ̂4, then

µ̂1 = −
1
2


−Σ̂2 + 2


Σ̂4 ±

1
2
i


Σ̂2 + 2


Σ̂4,

µ̂2 =
1
2


−Σ̂2 + 2


Σ̂4 ±

1
2
i


Σ̂2 + 2


Σ̂4.

(41)

2. If Σ̂2 > 2

Σ̂4, then

µ̂1 = ±
1

√
2
i


Σ̂2 +


Σ̂2

2 − 4Σ̂4,

µ̂2 = ±
1

√
2
i


Σ̂2 −


Σ̂2

2 − 4Σ̂4.

(42)

Proof. The result follows by direct calculation using Eq. (40). �

If Σ̂3 ≠ 0, then a quantity z, to be determined, is added to the
quantity in the parentheses on the left-hand side of Eq. (39),
µ̂2

+
1
2
Σ̂2 + z

2

= 2zµ̂2
+ Σ̂3µ̂+

1
4
Σ̂2

2 − Σ̂4 + Σ̂2z + z2.

(43)

The quantity z is chosen so that the right-hand side of the equation
is a perfect square, which means that z should be chosen so that
the discriminant of the right-hand side, a quadratic polynomial in
µ̂, is zero, viz.,

z3 + Σ̂2z2 +


1
4
Σ̂2

2 − Σ̂4


z −

1
8
Σ̂2

3 = 0. (44)

In fact the roots of Eq. (44) can be written down explicitly, if
necessary.

Lemma 10. Suppose ν1 > 0. If Σ̂3 ≠ 0, then Eq. (44) has at least
one positive root.

Proof. The existence of a positive root when Σ̂3 ≠ 0 follows
immediately from the graph of the cubic polynomial in Eq. (44)
with positive leading coefficient and negative constant coefficient.
The explicit formula for the roots is the well-known Cardano
formula, but it is not needed here. �

Definition 1. Suppose ν1 > 0. If Σ̂3 ≠ 0, then z is chosen, without
loss of generality, to be a positive root of Eq. (44).
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Corollary 4 (Second Symmetric-Polynomial Constraint). Suppose
ν1 > 0. If Σ̂3 ≠ 0, then the reality condition of Theorem 1, viz., the
Dirichlet eigenvalues come in complex-conjugate pairs, implies that

ρ+ = Σ̂2 +
1

√
2z
Σ̂3 + z ≥ 0,

ρ− = Σ̂2 −
1

√
2z
Σ̂3 + z ≥ 0,

(45)

where z > 0 is a root of Eq. (44). The explicit expressions for µ̂1 =

µ1 −
1
4Σ1 and µ̂2 = µ2 −

1
4Σ1 in terms of ν1 and ν2 are

µ̂1 = −


z
2

±
1

√
2
i


Σ̂2 +

1
√
2z
Σ̂3 + z,

µ̂2 =


z
2

±
1

√
2
i


Σ̂2 −

1
√
2z
Σ̂3 + z.

(46)

In particular, if Σ̂3 ≠ 0, then µ1 ≠ µ2.

Proof. Since z > 0 is a root of the cubic equation (44), the right-
hand side of Eq. (43) is a perfect square,
µ̂2

+
1
2
Σ̂2 + z

2

= 2z

µ̂+

1
4z
Σ̂3

2

. (47)

Therefore

µ̂2
+ s

√
2zµ̂+

1
2
Σ̂2 + s

1

2
√
2z
Σ̂3 + z = 0, (48)

where s = ±1. Finally, solving the quadratic equation (48) gives
explicit expressions for the shifted Dirichlet eigenvalues, together
with the algebraic constraints that are equivalent to the reality
condition. The reality constraint of Corollary 3 represents the
limiting case in which Σ̂3 → 0, since the Dirichlet eigenvalues are
continuous functions of the symmetric polynomials of the branch
points. �

Theorem 3 (Boundary of the Region Satisfying the Reality Condi-
tion). Suppose that ν1 > 0. Then the boundary of the set of points
(ν1, ν2) for which the reality condition of Theorem 1 is satisfied, viz.,
the Dirichlet eigenvalues come in complex-conjugate pairs, is a subset
of an algebraic set defined by

16Σ̂4(Σ̂
2
2 − 4Σ̂4)

2
− Σ̂2

3 (4Σ̂
3
2 − 144Σ̂2Σ̂4 + 27Σ̂2

3 ) = 0. (49)

On this boundary, if Σ̂3 ≠ 0, then the root z is given by

z = −
1
3
Σ̂2 +

1
3


Σ̂2

2 + 12Σ̂4 > 0. (50)

Proof. The Dirichlet eigenvalues are either real or come in
complex-conjugate pairs, and they are continuous functions of the
real symmetric polynomials. Therefore, the number of complex-
conjugate pairs of Dirichlet eigenvalues can change only when
ρ+ = 0 or ρ− = 0, if Σ̂3 ≠ 0, or when ρ+ → 0 or ρ− → 0 as
Σ̂3 → 0, by the algebraic constraints of Corollaries 3 and 4. Since
points where Σ̂3 = 0 are limit points of points where Σ̂3 ≠ 0, it
is sufficient to derive the boundary set with the assumption that
Σ̂3 ≠ 0.

When Σ̂3 ≠ 0, z > 0, so the set of (ν1, ν2) for which Σ̂3 ≠ 0
and either ρ+ = 0 or ρ− = 0 is equivalent to the set of solutions
of

2z(z + Σ̂2)
2
− Σ̂2

3 = 0. (51)

Now z > 0 is also a root of the cubic equation (44). The set of points
(ν1, ν2) for which Eqs. (44) and (51) have a common root is defined
by setting the resultant of the two equations to zero. The resultant
of Eqs. (44) and (51) is a nonzero constant multiple of

Σ̂2
3 (16Σ̂4(Σ̂

2
2 − 4Σ̂4)

2
− Σ̂2

3 (4Σ̂
3
2 − 144Σ̂2Σ̂4 + 27Σ̂2

3 )). (52)

Since Σ̂3 ≠ 0, Eq. (49) follows immediately.
The expression for the common root in Eq. (50) follows by

reducing the degree of z in the simultaneous Eqs. (44) and (51).
Note that if Σ̂4 = 0 and Σ̂3 ≠ 0, then Eq. (49) implies that
Σ̂2 < 0, so that z given by Eq. (50) is, in fact, always positive when
Σ̂3 ≠ 0. �

6. Dependence of extrema on the branch points

The effective integration of the µ1 and µ2 equations can be
accomplished by transforming the evolution Eqs. (18) for ν1 and
ν2, using the explicit expressions for the shifted variables µ̂1 and
µ̂2. In the case that ν1 > 0 and Σ̂3 ≠ 0, Corollary 4 implies that

∂ν1

∂x
= −2

√
2ν1(

√
ρ+ +

√
ρ−),

∂ν2

∂x
= 4ν1

√
z(

√
ρ+ −

√
ρ−)

+
√
2ν1(Σ1 + 4c2)(

√
ρ+ +

√
ρ−),

∂ν1

∂t
=
∂ν2

∂x
,

∂ν2

∂t
= −4

√
2ν1((z + ρ−)

√
ρ+ + (z + ρ+)

√
ρ−)

+
√
2ν1


−

1
2
Σ2

1 − 4c2Σ1 − 8c22


(
√
ρ+ +

√
ρ−)

− 4ν1
√
z(Σ1 + 4c2)(

√
ρ+ −

√
ρ−).

(53)

Moreover, if an oscillatory smooth bounded two-phase solution
exists, theremust be at least one positive relative extremum for ν1,
which can occur only ifµ1 = µ∗

1 andµ2 = µ∗

2 , providedµ1 ≠ µ2.
It is nowpossible to characterize explicitly all choices of the branch
points of K2 for which the solution for ν1 could possibly oscillate
on an interval of non-negative values.

Lemma 11. Suppose ν1 > 0. Then µ1 = µ∗

1 and µ2 = µ∗

2 if and
only if Σ̂3 = 0 and Σ̂2 = −2


Σ̂4. Also, µ1 = µ∗

2 or µ1 = µ2 if
and only if Σ̂3 = 0 and Σ̂2 = 2


Σ̂4.

Proof. Corollaries 3 and 4, containing the explicit expressions in
Eqs. (41), (42), and (46), imply the stated results. �

Lemma 12. If p(x, t) is a smooth bounded two-phase solution of
the NLS equation (1) and ν1(x, t) = |p(x, t)|2, then the nonzero
extrema of ν1(x, t) must occur at points (ν1, ν2) where Σ̂3 = 0 and
Σ̂2

2 − 4Σ̂4 = 0.

Proof. Theorem 2 shows that extrema can only occur when either
(i) µ1 = µ2 or (ii) µ1 = µ∗

1 and µ2 = µ∗

2 . Together with
the previous lemma, the result follows. Alternatively, the same
result can be obtained from the system of Eqs. (53) and the explicit
expressions in Corollaries 3 and 4 for the Dirichlet eigenvalues. �

Lemma 13. Suppose ν1 > 0. Then Σ̂3 = 0 and Σ̂2
2 − 4Σ̂4 = 0 if

and only if P(ν1) = 0, where P(ν1) is a polynomial of degree ten in
ν1.

Proof. P(ν1) is the resultant in the variable ν2 of the two
polynomials of ν2 given by ν31Σ̂3 and ν41 (Σ̂

2
2 − 4Σ̂4). �



22 O.C. Wright III / Physica D 321–322 (2016) 16–38

The effectiveness of the integration method presented in this
paper lies in the fact, stated in the following theorem, that the roots
of the polynomial equation P(ν1) = 0 can be expressed explicitly
in terms of the branch points of the Riemann surface K2. In the
following, the resultant polynomial P(ν1) is assumed to be defined
uniquely up to a nonzero constant multiplicative factor.

Theorem 4. If p(x, t) is a smooth bounded two-phase solution of
the NLS equation (1), then ν1(x, t) oscillates on an interval bounded
either by zero or by positive roots of the polynomial equation P(ν1) =

0 given in Lemma 13. The polynomial P(ν1) is also a resolvent
polynomial for the factorization of the reduced form of R(λ) into two
cubic factors. In particular, the ten roots of P(ν1) = 0, together with
the corresponding ν2 values, are given explicitly in terms of the six
branch points λi, i = 1, . . . , 6, of K2 by the formulas

ν1 = −
1
4
χ2
1 ,

ν2 = −
1
2
χ1χ2,

(54)

where

χ1 = λπ(1) + λπ(2) + λπ(3) − λπ(4) − λπ(5) − λπ(6),

χ2 = λ2π(1) + λ2π(2) + λ2π(3) − λ2π(4) − λ2π(5) − λ2π(6),
(55)

and (π(1), π(2), π(3), π(4), π(5), π(6)) ∈ S6, the permutation
group of order six.

Proof. Lemmas 11 and 12 show that nonzero extrema of ν1 occur
only if P(ν1) = 0.When ν1 > 0, P(ν1) = 0 if and only if (i)µ1 = µ2
or (ii) µ1 = µ∗

1 and µ2 = µ∗

2 or (iii) µ1 = µ∗

2 . In each of these
cases, i.e., for each of the ten roots of P(ν1) = 0, the sexticR factors
into the product of two cubics Q1 and Q2. Specifically, in the case
µ1 = µ∗

1 and µ2 = µ∗

2 or the case µ1 = µ∗

2 ,

R(λ) = −Ψ11(λ)
2
+ ν1(λ− µ1)

2(λ− µ2)
2,

= Q1(λ)Q2(λ), (56)

where

Q1 = iΨ11(λ)+ i
√
ν1(λ− µ1)(λ− µ2),

Q2 = iΨ11(λ)− i
√
ν1(λ− µ1)(λ− µ2).

(57)

There is a similar factorization in the case µ1 = µ2. The zeros of
each cubic factor form two non-overlapping sets, each comprised
of three distinct branch points. Using Vieta’s formulas to express
the coefficients of the cubic factors Q1 and Q2 in terms of the three
roots of Q1 = 0 and the three roots of Q2 = 0, explicitly solving for
ν1 and ν2 from the coefficients of the quadratic and constant terms
of Q1 and Q2, and eliminating the terms depending on µ1 and µ2,
leads to the stated formulas for ν1 and ν2. Notice that both ν1 and ν2
are invariant under the actions of re-ordering the first three or the
last three summands, and also swapping the first three summands
with the second three summands, so that the number of values of
either ν1 or ν2 is 6!/(3!3!2!) = 10, as expected.

In fact, explicit calculation shows that if ν1 = −a22, then the
degree ten polynomial P(ν1) is the resolvent polynomial for the
factorization into two cubic factors, one of the factors being λ3 +

a2λ2 + a1λ + a0, of the reduced sextic polynomial of the sextic
polynomial R(λ). The resolvent polynomial can be calculated by
successive eliminations of variables from the equations obtained
by equating coefficients of the expanded product of the desired
factors equal to the polynomial to be factored [31]. �

Theorem 5. If a smooth bounded two-phase solution of the NLS
equation (1) exists, then the values of ν1 and ν2 at critical points of

ν1(x, t) are given by

ν1 = −
1
4
χ2
1 ,

ν2 = −
1
2
χ1χ2,

(58)

where

χ1 = λπ(1) + λπ(2) + λπ(3) − λπ(4) − λπ(5) − λπ(6),

χ2 = λ2π(1) + λ2π(2) + λ2π(3) − λ2π(4) − λ2π(5) − λ2π(6).
(59)

Moreover, if µ1 ≠ µ2 at a critical point, then the following expres-
sions of the second-order partial derivatives at the critical point have
a similarly explicit dependence on the branch points,

ν1xxν1tt − ν21xt = 256ν21Ψ11(µ1)Ψ11(µ2)

= −16χ1

3
k=1

(λπ(k) − λπ(4))(λπ(k) − λπ(5))

× (λπ(k) − λπ(6)), (60)

and

ν1xx = 8iν1
Ψ11(µ1)− Ψ11(µ2)

µ1 − µ2

= −2(λπ(1) − λπ(4))(λπ(1) − λπ(5))(λπ(2) − λπ(4))

× (λπ(2) − λπ(5))− 2(λπ(1) − λπ(4))(λπ(1) − λπ(6))

× (λπ(3) − λπ(4))(λπ(3) − λπ(6))− 2(λπ(2) − λπ(5))

× (λπ(2) − λπ(6))(λπ(3) − λπ(5))(λπ(3) − λπ(6))

− 2χ1(λπ(1) − λπ(4))(λπ(2) − λπ(5))(λπ(3) − λπ(6)), (61)

where (π(1), π(2), π(3), π(4), π(5), π(6)) ∈ S6, where S6 is the
permutation group of order 6.

Proof. The first part of the theorem is just a restatement of the
result of the previous theorem, viz., by Lemma 4, at a critical
point of ν1(x, t) either (i) µ1 = µ∗

1 and µ2 = µ∗

2 or (ii) µ1 =

µ∗

2 . In either case P(ν1) = 0 by Lemmas 10 and 12. According
to Theorem 4, ν1 and ν2 are given by the stated formulas for
one of the permutations of the indices. The expressions for the
second-order partial derivatives at the critical point, assuming
µ1 ≠ µ2, follow by direct substitution of (i) µ1 = µ∗

1 and
µ2 = µ∗

2 or (ii) µ1 = µ∗

2 into the expressions for the second-
order partial derivatives, resulting in formulas in terms of Ψ11(µ).
Then the explicit expressions for µ1 and µ2 in terms of ν1 and ν2
are substituted into Ψ11(µ), using Eqs. (36) and (41). Finally the
explicit expressions for ν1 and ν2 in terms of the branch points,
given by Eq. (58), are used. �

7. Branch point reality conditions

Using Theorem4, the reality condition of Corollary 1 on thenon-
singular algebraic curve K2 can be strengthened.

Lemma 14. If λ1, λ2, λ3, λ4, λ5, λ6 ∈ R, then P(ν1) = 0 has no
positive roots.

Proof. The result follows immediately from Eq. (54). �

Lemma 15. If ν2 ∈ R, λ1 = λ∗

2 , and λ3, λ4, λ5, λ6 ∈ R, then
P(ν1) = 0 has no positive roots.

Proof. The proof is by contradiction. If P(ν1) = 0 and ν1 > 0,
then Eq. (54) implies, for example, that λ3 + λ4 = λ5 + λ6
and, also, that λ3λ4 = λ5λ6, since ν2 is real. However these
two equalities imply that λ3 is equal to at least one of λ5 or λ6,
contradicting the distinctness of the branch points, viz., the non-
singularity assumption on K2. �
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Lemma 16. If ν2 ∈ R, λ1 = λ∗

2, λ3 = λ∗

4 , λ5, λ6 ∈ R, then
P(ν1) = 0 has no positive roots.

Proof. The proof of this lemma is similar to the previous lemma. If
ν1 > 0 in Eq. (54) and the corresponding ν2 ∈ R in Eq. (54), then
either λ5 = λ6 or, otherwise, λ1 equals one of λ5 or λ6. �

Theorem 6 (Reality Conditions for Bounded Two-Phase Solutions). If
the NLS equation (1) has a smooth bounded two-phase solution, and
K2 is non-singular, i.e., its six branch points are distinct, then the
branch points form three complex-conjugate pairs. P(ν1) = 0 has
exactly four distinct non-negative roots, these are the possible nonzero
bounds of the two-phase solution, and the corresponding values of
ν2 given by Eq. (54) are also real. In particular, if λ1 = λ∗

2 =

r1 + is1, λ3 = λ∗

4 = r2 + is2 and λ5 = λ∗

6 = r3 + is3, with
0 < s1 ≤ s2 ≤ s3, then the four real roots of P(ν1) = 0 are

0 ≤ ν
(1)
1 < ν

(2)
1 < ν

(3)
1 < ν

(4)
1 , (62)

where

ν
(1)
1 = (s1 + s2 − s3)2,

ν
(2)
1 = (s1 − s2 + s3)2,

ν
(3)
1 = (−s1 + s2 + s3)2,

ν
(4)
1 = (s1 + s2 + s3)2,

(63)

and

ν
(1)
2 = 4(s1 + s2 − s3)(r1s1 + r2s2 − r3s3),

ν
(2)
2 = 4(s1 − s2 + s3)(r1s1 − r2s2 + r3s3),

ν
(3)
2 = 4(−s1 + s2 + s3)(−r1s1 + r2s2 + r3s3),

ν
(4)
2 = 4(s1 + s2 + s3)(r1s1 + r2s2 + r3s3).

(64)

Proof. The preceding lemmas eliminate any other possibilities for
branch points satisfying the reality conditions. Theorem 4, Eq. (54),
provides the explicit expressions for the four real roots. The explicit
expressions for ν1 show that the four real values are distinct.
Otherwise at least one of s1, s2, or s3 would be zero, contradicting
the assumption that the branch points are distinct. Notice that the
set of four values ν(i)1 , i = 1, . . . , 4, is invariant with respect to
labeling the branch points, but the specific ordering of the four
values, with the exception of the largest value, depends on the
choice of labeling of the imaginary parts of the branch points. In
particular, with the labeling 0 < s1 ≤ s2 ≤ s3, the ordering
0 ≤ ν

(1)
1 < ν

(2)
1 < ν

(3)
1 < ν

(4)
1 follows immediately by simple

algebra. �

Discussion of the labeling of the branch points.
Without loss of generality, the labeling of the three real parts

of the branch points can be chosen so that r1 ≤ r2 ≤ r3, or the
labeling of the absolute values of the imaginary parts of the branch
points can be chosen so that 0 < s1 ≤ s2 ≤ s3. However, these
two conventions are not, in general, simultaneously valid. In this
manuscript both conventions will be used in different contexts.

1. In Theorem6 it is convenient to know the ordering of the imagi-
nary parts of the branch points, because this determines the rel-
ative order of ν(i)1 , i = 1, . . . , 4. In the case of the one-phase so-
lutions, the corresponding formulas can be obtained as a limit-
ing case, for example, by choosing a labeling order for the imag-
inary parts, viz., 0 < s1 ≤ s2 ≤ s3, and allowing the small-
est imaginary part to approach zero. In this case the maximum
squared modulus is (s2 + s3)2 and the minimum squared mod-
ulus is (s3 − s2)2. These two formulas are symmetric with re-
spect to interchanging s2 and s3. In the two-phase case the set
of four values ν(i)1 , i = 1, . . . , 4, is also symmetric with respect

to changing the labeling of the branch points, but the ordering
of these four values is no longer invariant, except for the maxi-
mum value ν(4)1 .

2. In the Appendix and the solution of the Jacobi inversion prob-
lem, a specific set of canonical cycles on the Riemann surface
must be chosen, as in Fig. 7. In this case, it is convenient to label
the branch points so that r1 ≤ r2 ≤ r3. In the integration of the
solution, the initial conditionswill be placed at (ν(4)1 , ν

(4)
2 ), using

the corresponding formulas for µ1 and µ2 given in Lemma 18.
Since these formulas are symmetric with respect to labeling of
the branch points, they are equally valid for either labeling con-
vention of the branch points.

Lemma 17. If a two-phase solution of the NLS equation (1) exists,
then it is bounded, viz., there exists a positive number M ∈ R such
that ν1(x, t)2 + ν2(x, t)2 < M for all x and t.
Proof. First we show that ν1 is bounded.
1. If ν1 → ∞ and ν2 = o(ν1) andΛ1 ≠ 0, thenΣ4 ∼ −

1
16Λ

2
1ν1 <

0, which is impossible sinceΣ4 ≥ 0.
2. If ν1 → ∞ and ν2 = o(ν1) andΛ1 = 0, thenΣ4 ∼ −

ν22
16ν1

< 0,
also impossible.

3. If ν1 → ∞ and ν2 = O(ν1), then Σ̂2 ∼ −
1
4ν1, Σ̂3 ∼ −

1
8Λ1ν1+

3
16ν2, and z → 0. Hence

Σ̂2 ±
Σ̂3
√
2z

+ z ∼ −
ν1

4
or ±

−
1
8Λ1ν1 +

3
16ν2

√
2z

, (65)

so that, in any case, at least one ofρ1 orρ2 will become negative,
which contradicts the reality condition of Corollary 4.

4. If ν1 → ∞ and ν2
ν1

→ ∞, then Σ4 ∼ −
ν22
ν1
< 0, which is also

impossible.
The preceding cases are exhaustive and show that ν1 is bounded.

Consequently, if |ν2| → ∞, then

Σ4 ∼ −
1
16
ν22

ν1
,

which contradictsΣ4 ≥ 0. Hence |ν2| is also bounded. �

Lemma 18. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2
and λ5 = λ∗

6 = r3 + is3, with s1, s2, s3 > 0. If a smooth two-
phase solution of the NLS equation (1) exists in a neighborhood of
a point where ν1(x, t) = ν

(4)
1 , then ν1 = ν

(4)
1 > 0 is a relative

maximum of ν1(x, t). Moreover, the values of the corresponding
solutions (µ1, σ1

√
R(µ1)) ∈ R2 and (µ2, σ2

√
R(µ2)) ∈ R2 of the

Dubrovin equations on the Riemann surface K2 at this point are real
and are given by explicit formulas,

µ1 =
r1(s2 + s3)+ r2(s1 + s3)+ r3(s1 + s2)−


A(r⃗, s⃗)

2(s1 + s2 + s3)
,

µ2 =
r1(s2 + s3)+ r2(s1 + s3)+ r3(s1 + s2)+


A(r⃗, s⃗)

2(s1 + s2 + s3)
,

(66)

where

A(r⃗, s⃗) = 4s1s2s3(s1 + s2 + s3)+ s21(r2 − r3)2

+ s22(r1 − r3)2 + s23(r1 − r2)2 + 2s1s3(r2 − r3)
× (r2 − r1)+ 2s2s3(r1 − r3)(r1 − r2)
+ 2s1s2(r3 − r1)(r3 − r2), (67)

and A(r⃗, s⃗) > 0. The hyperelliptic irrationalities are given by

σi


R(µi) = σi|µi − λ1| |µi − λ3| |µi − λ5|, (68)

for i = 1, 2, with the hyperelliptic sheets given by σ1 = −1 and
σ2 = 1.
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Proof. Direct substitution shows that when (ν1, ν2) = (ν
(4)
1 , ν

(4)
2 ),

Σ̂2 = −
A(r⃗, s⃗)

2(s1 + s2 + s3)2
< 0 (69)

where

A(r⃗, s⃗) = 4s1s2s3(s1 + s2 + s3)+ s21(r2 − r3)2 + s22(r1 − r3)2

+ s23(r1 − r2)2 + 2s1s3(r2 − r3)(r2 − r1)
+ 2s2s3(r1 − r3)(r1 − r2)+ 2s1s2(r3 − r1)(r3 − r2)

= 4s1s2s3(s1 + s2 + s3)+ (s1(r2 − r3)+ s3(r1 − r2))2

+ s22(r1 − r3)2 + 2s2s3(r1 − r3)(r1 − r2)
+ 2s1s2(r3 − r1)(r3 − r2)

> 0. (70)

The positivity of A(r⃗, s⃗) follows from the fact that the first
expression in Eq. (70) for A(r⃗, s⃗) is symmetric with respect to
interchange of the indices i = 1, 2, 3. In particular, if s1, s2, s3 > 0
and r1 ≤ r2 ≤ r3, then the second expression for A is positive. Thus
Σ̂2 = −2


Σ̂4 and, hence, µ1 = µ∗

1 and µ2 = µ∗

2 , with

µ1 =
r1(s2 + s3)+ r2(s1 + s3)+ r3(s1 + s2)−


A(r⃗, s⃗)

2(s1 + s2 + s3)
,

µ2 =
r1(s2 + s3)+ r2(s1 + s3)+ r3(s1 + s2)+


A(r⃗, s⃗)

2(s1 + s2 + s3)
.

(71)

Obviously, µ1, µ2 ∈ R and µ1 ≠ µ2, as expected. Moreover, the
real symmetry of the hyperelliptic curve K2 implies that

R(µi) = |µi − λ1|
2
|µi − λ3|

2
|µi − λ5|

2, (72)

since µi ∈ R for i = 1, 2.
The explicit expressions of Theorem5 cannowbeused to obtain

the result, using standard results of differential calculus. Eq. (27) is
also used, in order to determine the correct hyperelliptic sheets,
σ1 = ±1 or σ2 = ±1, for the points (µ1, σ1

√
R(µ1)) and

(µ2, σ2
√

R(µ2)) on the Riemann surface K2. Eq. (60) becomes

∂2ν1

∂x2
∂2ν1

∂t2
−


∂2ν1

∂x∂t

2

= 256ν21Ψ11(µ1)Ψ11(µ2)

= −256ν21σ1σ2


R(µ1)


R(µ2),

= 256(s1 + s2 + s3)s1s2s3|λ1 − λ∗

3|
2

× |λ1 − λ∗

5|
2
|λ3 − λ∗

5|
2

> 0. (73)

Thus σ1σ2 < 0 and σ2 = −σ1.
Eq. (61) becomes

∂2ν1

∂x2
= 8iν1

Ψ11(µ1)− Ψ11(µ2)

µ1 − µ2

= 8ν1
s1 + s2 + s3

A(r⃗, s⃗)
σ1(


R(µ1)+


R(µ2))

= −32(s1 + s2 + s3)s1s2s3 − 8s1s2|λ1 − λ∗

3|
2

− 8s1s3|λ1 − λ∗

5|
2
− 8s2s3|λ3 − λ∗

5|
2

< 0. (74)

Hence there is a relative maximum. Moreover, at this relative
maximum σ1 = −1 and σ2 = 1.

Finally, notice that all the arguments in the proof and the final
formulas are symmetric with respect to the labeling of the branch
points. �

Lemma 19. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2 and
λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. If a smooth two-phase
solution of the NLS equation (1) exists in a neighborhood of a point
(x, t, ν1(x, t)) = (x, t, ν(i)1 ) for i = 2 or i = 3, then (x, t, ν(i)1 ) is a
saddle point of ν1 = ν1(x, t).

Proof. Consider the case where i = 3, the case for i = 2 is similar.
As in the previous lemma,

Σ̂2 = −
Ã

2(−s1 + s2 + s3)2
, (75)

where Ã = A(r⃗,−s1, s2, s3) and A(r⃗, s⃗) is given by Eq. (70). In this
case the sign of Ã = A(r⃗,−s1, s2, s3) is indeterminate, and

µ1 =
r1(s2 + s3)+ r2(−s1 + s3)+ r3(−s1 + s2)−


Ã

2(−s1 + s2 + s3)
,

µ2 =
r1(s2 + s3)+ r2(−s1 + s3)+ r3(−s1 + s2)+


Ã

2(−s1 + s2 + s3)
.

(76)

If Ã ≠ 0, then µ1 ≠ µ2 and the formula of Eq. (60) is applicable. If
Ã = 0, then µ1 = µ2 ∈ R, but all the expressions for the second-
order partial derivatives of ν1(x, t) have finite limits as µ2 → µ1
with µ∗

2 = µ1. So the formula of Eq. (60) is still valid in the limit.
In particular, regardless of the value of Ã,

∂2ν1

∂x2
∂2ν1

∂t2
−


∂2ν1

∂x∂t

2

= 256ν21Ψ11(µ1)Ψ11(µ2)

= −256(−s1 + s2 + s3)s1s2s3
× |λ1 − λ3|

2
|λ1 − λ5|

2
|λ3 − λ∗

5|
2

< 0, (77)

so there is a saddle point. Notice that the assumed order of the
imaginary parts of the branch points was used in the proof. �

Lemma 20. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2 and
λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. If a smooth two-phase
solution of the NLS equation (1) exists in a neighborhood of a point
(x, t, ν1(x, t)) = (x, t, ν(1)1 ), then ν1 = ν1(x, t) has a saddle point at
(x, t, ν(1)1 )when s3 < s1 + s2, but ν1(x, t) has a relative minimum of
ν1 = ν

(1)
1 > 0 when s3 > s1 + s2.

Proof. In this case

Σ̂2 = −
Ã

2(s1 + s2 − s3)2
, (78)

where Ã = A(r⃗, s1, s2,−s3) and A(r⃗, s⃗) is given by Eq. (70). In
particular,

Ã = −4s1s2s3(s1 + s2 − s3)+ s21(r2 − r3)2 + s22(r1 − r3)2

+ s23(r1 − r2)2 − 2s1s3(r2 − r3)(r2 − r1)

− 2s2s3(r1 − r3)(r1 − r2)+ 2s1s2(r3 − r1)(r3 − r2), (79)

which, in general, has indeterminate sign. However, in the case
s3 > s1 + s2, it can be shown that Ã > 0. Obviously the first term
Ã is positive in this case, however, the expression for Ã is no longer
symmetric with respect to the indices, so there are three cases to
consider.

(i) If r2 ≤ r1 ≤ r3 or r3 ≤ r1 ≤ r2, then

Ã = −4s1s2s3(s1 + s2 − s3)
+ (s1(r2 − r3)+ s3(r1 − r2))2

+ s22(r1 − r3)2 − 2s2s3(r1 − r3)(r1 − r2)



O.C. Wright III / Physica D 321–322 (2016) 16–38 25

+ 2s1s2(r3 − r1)(r3 − r2)
> 0, (80)

since the first term is positive and the remaining terms are
non-negative.

(ii) If r1 ≤ r2 ≤ r3 or r3 ≤ r2 ≤ r1, then

Ã = −4s1s2s3(s1 + s2 − s3)
+ (s2(r1 − r3)− s3(r1 − r2))2

+ s21(r2 − r3)2 − 2s1s3(r2 − r3)(r2 − r1)
+ 2s1s2(r3 − r1)(r3 − r2)

> 0, (81)

since the first term is positive and the remaining terms are
non-negative.

(iii) If r1 ≤ r3 ≤ r2 or r2 ≤ r3 ≤ r1, then

Ã = −4s1s2s3(s1 + s2 − s3)+ s21(r2 − r3)2

+ s22(r1 − r3)2 + s23(r1 − r2)2 − 2s1s3(r2 − r3)
× (r2 − r1)− 2s2s3(r1 − r3)(r1 − r2)
+ 2s1s2(r3 − r1)(r3 − r2)

> as21 + bs1 + c, (82)

where, by the assumption of Theorem 6, 0 < s1 ≤ s2, and

a = (r2 − r3)2 ≥ 0,
b = −2s3(r2 − r3)(r2 − r1)

+ 2s2(r3 − r1)(r3 − r2) ≤ 0,
c = (s2(r1 − r3)− s3(r1 − r2))2 ≥ 0.

(83)

Consider the quadratic polynomial f (s1) = as21 + bs1 + c on
the interval 0 ≤ s1 ≤ s2. Clearly f (0) = c ≥ 0. When s1 = s2,
it is also true that s3 > s1 + s2 = 2s2, so

f (s2) = s22(r1 + r2 − 2r3)2 + s3(s3 − 2s2)(r1 − r2)2 ≥ 0. (84)

If r2 = r3, then the graph of y = f (s1) is a straight line and
f (s1) ≥ 0 for all 0 ≤ s1 ≤ s2. If r2 ≠ r3, then the minimum of
f (s1) occurs at

s1m =
s2(r3 − r1)+ s3(r2 − r1)

r2 − r3
> 0. (85)

(1) In the case r1 ≤ r3 < r2, we can use s3 > s1 + s2 to show
that
s1m =

s2(r3 − r1)+ s3(r2 − r1)
r2 − r3

>
s2(r3 − r1)+ (s1 + s2)(r2 − r1)

r2 − r3

=
s1(r2 − r1)+ 2s2(r3 − r1)+ s2(r2 − r3)

r2 − r3

= s2 +
s1(r2 − r1)+ 2s2(r3 − r1)

r2 − r3
≥ s2. (86)

(2) In the case r2 < r3 ≤ r1, we can similarly show, using
s3 > s1 + s2, that

s1m =
s2(r1 − r3)+ s3(r1 − r2)

r3 − r2

>
s2(r1 − r3)+ (s1 + s2)(r1 − r2)

r3 − r2

=
s1(r1 − r2)+ 2s2(r1 − r3)+ s2(r3 − r2)

r3 − r2

= s2 +
s1(r1 − r2)+ 2s2(r1 − r3)

r3 − r2
≥ s2. (87)

In both cases, s1m > s2, so, on the interval 0 ≤ s1 ≤ s2, f (s1) ≥

0. Therefore

Ã > as21 + bs1 + c ≥ 0. (88)

Thus, in all cases when s3 > s1 + s2, Ã > 0 and, hence, Σ̂2 < 0.
The expressions for µ1 and µ2 are similar to those obtained in

the previous lemma,

µ1 =
r1(s2 − s3)+ r2(s1 − s3)+ r3(s1 + s2)−


Ã

2(s1 + s2 − s3)
,

µ2 =
r1(s2 − s3)+ r2(s1 − s3)+ r3(s1 + s2)+


Ã

2(s1 + s2 − s3)
,

(89)

so that when s3 > s1 + s2, Ã > 0 impliesµ1, µ2 ∈ R andµ1 ≠ µ2.
The formula given by Eq. (60) implies that when ν1 = ν

(1)
1 ,

∂2ν1

∂x2
∂2ν1

∂t2
−


∂2ν1

∂x∂t

2

= 256ν21Ψ11(µ1)Ψ11(µ2)

= −256(s1 + s2 − s3)s1s2s3

× |λ1 − λ∗

3|
2
|λ1 − λ5|

2
|λ3 − λ5|

2. (90)

If s3 < s1 + s2, then the above expression is negative, so there is a
saddle point. If s3 > s1 + s2, then the above expression is positive.
Also Ã > 0 and µ1 ≠ µ2, so Eq. (61) becomes

∂2ν1

∂x2
= 8iν1

Ψ11(µ1)− Ψ11(µ2)

µ1 − µ2

= 32(s1 + s2 − s3)s1s2s3 − 8s1s2|λ1 − λ∗

3|
2

+ 8s1s3|λ1 − λ5|
2
+ 8s2s3|λ3 − λ5|

2

= 8(s1 + s2)(s3 − s1)(s3 − s2)(s3 − s1 − s2)
− 8s1s2(r1 − r2)2 + 8s2s3(r2 − r3)2

+ 8s1s3(r1 − r3)2

> 8(s1 + s2)(s3 − s1)(s3 − s2)(s3 − s1 − s2)
− 8s1s2(r1 − r2)2 + 8s2(s1 + s2)(r2 − r3)2

+ 8s1(s1 + s2)(r1 − r3)2

= 8(s1 + s2)(s3 − s1)(s3 − s2)(s3 − s1 − s2)
+ 8(s2(r2 − r3)+ s1(r1 − r3))2

> 0, (91)

so ν1 = ν
(1)
1 is a relative minimum. Clearly, the assumed order of

the imaginary parts was crucial to the result. �

Lemma 21. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2 and
λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. If ν
(i)
1 > 0, then the four

real points (ν(i)1 , ν
(i)
2 ), i = 1, . . . , 4, given in Theorem 6, satisfying

Σ̂3 = 0 and Σ̂2
2 −4Σ̂4 = 0, are singular points of a one-dimensional

algebraic set defined by Eq. (49),

16Σ̂4(Σ̂
2
2 − 4Σ̂4)

2
− Σ̂2

3 (4Σ̂
3
2 − 144Σ̂2Σ̂4 + 27Σ̂2

3 ) = 0. (92)

At (ν1, ν2) = (ν
(i)
1 , ν

(i)
2 ), for i = 1, 2, and 3, if Σ̂2 = −2


Σ̂4 < 0,

then (ν(i)1 , ν
(i)
2 ) is a node, but if Σ̂2 = 2


Σ̂4 > 0, then (ν(i)1 , ν

(i)
2 )

is an isolated point. In particular, when s3 > s1 + s2, at (ν1, ν2) =

(ν
(1)
1 , ν

(1)
2 ), Σ̂2 = −2


Σ̂4 < 0, and (ν(1)1 , ν

(1)
2 ) is a node. However,

at (ν1, ν2) = (ν
(4)
1 , ν

(4)
2 ) it is always true that Σ̂2 = −2


Σ̂4 < 0,

hence (ν(4)1 , ν
(4)
2 ) is always a node.

Proof. When ν1 > 0, Eq. (92) defines an algebraic set given by
a polynomial equation Q (ν1, ν2) = 0, in which Q is of degree 9
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in ν1 and degree 8 in ν2. At (ν1, ν2) = (ν
(4)
1 , ν

(4)
2 ), substitution

and simplification, using a computer algebra system such asMaple,
shows that Q = 0,Qν1 = 0,Qν2 = 0, and

Qν1ν1Qν2ν2 − Q 2
ν1ν2

= Ks21s
2
2s

2
3(s1 + s2 + s3)10a21a

2
2a

2
3 Σ̂

5
2 , (93)

where K > 0 is a positive constant and

a1 = (r2 − r3)2 + (s2 + s3)2,
a2 = (r1 − r3)2 + (s1 + s3)2,
a3 = (r2 − r1)2 + (s1 + s2)2.

(94)

Clearly a1, a2, and a3 are all strictly positive. In Lemma 18, it was
shown that Σ̂2 = −2Σ̂4 < 0 at (ν1, ν2) = (ν

(4)
1 , ν

(4)
2 ). Hence, at

(ν1, ν2) = (ν
(4)
1 , ν

(4)
2 )

Qν1ν1Qν2ν2 − Q 2
ν1ν2

< 0 (95)

and there is always a node at this singular point.
In the case of each of the other singular points (ν(i)1 , ν

(i)
2 ), i =

1, 2, 3, Eqs. (93) and (94) remain the same, except that the sign in
front of s1 changes from positive to negative for i = 3, the sign in
front of s2 changes from positive to negative for i = 2, and the sign
in front of s3 changes from positive to negative for i = 1. Thus the
sign of the expression on the right-hand side of Eq. (93) is always
the opposite of the sign of Σ̂2. Therefore, when Σ̂2 > 0, there is an
isolated point, but when Σ̂2 < 0, there is a node.

In particular, the proof of Lemma 20 shows that, when s3 >
s1 + s2, Σ̂2 < 0, so that when s3 > s1 + s2, the point (ν(1)1 , ν

(1)
2 ) is

a node. �

Lemma 22. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2 and
λ5 = λ∗

6 = r3 + is3, with s1, s2, s3 > 0. The common root z > 0 of
Eqs. (44) and (51) that exists at each point of the algebraic set (92),
provided Σ̂3 ≠ 0, has a positive limit z → −Σ̂2 > 0 at the node
(ν
(4)
1 , ν

(4)
2 ), where Σ̂3 = 0 and Σ̂2 = −2


Σ̂4 < 0. Moreover, the

same point (ν(4)1 , ν
(4)
2 ) is a regular point of each of the two distinct

algebraic sets ρ+ = 0 and ρ− = 0which cross transversely as subsets
of the algebraic set (92) at the node at (ν(4)1 , ν

(4)
2 ).

Proof. Lemma 18 shows that Σ̂2 = −2

Σ̂2 < 0 at (ν(4)1 , ν

(4)
2 ).

Since Σ̂3 = 0 at this point, Eqs. (44) and (51) have two common
roots, z = 0 (multiplicity two) and z = −Σ̂2 (multiplicity one).
Therefore, the common root z > 0 of Eqs. (44) and (51) that exists
at each point of the algebraic set (92), provided Σ̂3 ≠ 0, must
approach either 0 or −Σ̂2. The expression for this common root
is given in Eq. (50), and since Σ̂2 < 0, z → −Σ̂2 > 0. Thus the
singularity in ρ+ and ρ− at (ν(4)1 , ν

(4)
2 ) is removable.

Direct calculation shows that, at (ν(4)1 , ν
(4)
2 ),

Σ̂3,ν2 =
1

2(s1 + s2 + s3)4
((s1 + s2)(s1 + s3)(s2 + s3)

× (s1 + s2 + s3)+ s1s2(r1 − r2)2 + s1s3(r1 − r3)2

+ s2s3(r2 − r3)2)

> 0, (96)

and

ρ±,ν2 = Σ̂2,ν2 + zν2 ±
1

√
z
Σ̂3,ν2 . (97)

So at least one ofρ±,ν2 is nonzero. Thus (ν
(4)
1 , ν

(4)
2 ) is a regular point

of at least one of ρ+ = 0 or ρ− = 0. Since the same point is
also a node of the algebraic set (92), in a neighborhood of which

z > 0 and ρ+ρ− = 0 on the algebraic set, the two transverse one-
dimensional submanifolds of the algebraic set at the node must
correspond to ρ+ = 0 and ρ− = 0. �

Lemma 23. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2
and λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. When
s3 > s1 + s2, the common root z > 0 of Eqs. (44) and (51) that
exists at each point of the algebraic set (92), provided Σ̂3 ≠ 0, has a
positive limit z = −Σ̂2 > 0 at the node (ν(1)1 , ν

(1)
2 ), where Σ̂3 = 0

and Σ̂2 = −2

Σ̂4 < 0. Moreover, the same point (ν(1)1 , ν

(1)
2 ) is

a regular point of each of the two distinct algebraic sets ρ+ = 0 and
ρ− = 0which cross transversely as subsets of the algebraic set (92) at
the node (ν(1)1 , ν

(1)
2 ).

Proof. Lemma20 shows that,when s3 > s1+s2, Σ̂2 = −2

Σ̂4 <

0 at (ν(1)1 , ν
(1)
2 ). As in the previous lemma, the expression for the

common root z > 0 on the boundary is given by Eq. (50), and since
Σ̂2 < 0, z → −Σ̂2 > 0. Thus the singularity in ρ+ and ρ− at
(ν
(1)
1 , ν

(1)
2 ) is removable.

Direct calculation shows that, at (ν(1)1 , ν
(1)
2 ),

Σ̂3,ν2 =
1

2(s1 + s2 − s3)4
((s1 + s2)(s1 − s3)(s2 − s3)

× (s1 + s2 − s3)+ s1s2(r1 − r2)2 − s1s3(r1 − r3)2

− s2s3(r2 − r3)2)

<
1

2(s1 + s2 − s3)4
((s1 + s2)(s1 − s3)(s2 − s3)

× (s1 + s2 − s3)+ s1s2(r1 − r2)2

− s1(s1 + s2)(r1 − r3)2 − s2(s1 + s2)(r2 − r3)2)

=
1

2(s1 + s2 − s3)4
((s1 + s2)(s1 − s3)(s2 − s3)

× (s1 + s2 − s3)− s21(r1 − r3)2

− 2s1s2(r2 − r3)(r1 − r3)− s22(r2 − r3)2)

=
1

2(s1 + s2 − s3)4
((s1 + s2)(s1 − s3)(s2 − s3)

× (s1 + s2 − s3)− (s1(r1 − r3)+ s2(r2 − r3))2)
< 0, (98)

since s3 > s1 + s2. Also

ρ±,ν2 = Σ̂2,ν2 + zν2 ±
1

√
z
Σ̂3,ν2 . (99)

So at least one of ρ±,ν2 is nonzero at (ν(1)1 , ν
(1)
2 )when s3 > s1 + s2.

Thus (ν(1)1 , ν
(1)
2 ) is a regular point of at least one of ρ+ = 0 or

ρ− = 0. Since the same point is also a node of the algebraic
set (92), in a neighborhood of which z > 0 and ρ+ρ− = 0 on the
algebraic set, the two transverse one-dimensional submanifolds
of the algebraic set at the node must correspond to ρ+ = 0 and
ρ− = 0. �

Lemma 24. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2
and λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. If
s3 > s1 + s2, then for each point (0, ν2) in the ν1 − ν2-plane
there is some open neighborhood of that point such that, for each
point in that neighborhood for which ν1 > 0, the reality constraint
of Theorem 1, viz., the Dirichlet eigenvalues come in complex-
conjugate pairs, cannot be true. Thus, when s3 > s1 + s2, there is
no smooth two-phase solution whose minimum value of ν1 is zero.
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Proof. Theorem 3 says that when ν1 > 0, the boundary of the set
of points (ν1, ν2) for which the reality condition is satisfied lies on
an algebraic set defined by Eq. (49), viz., a polynomial equation
Q (ν1, ν2) = 0, in which Q is of degree 9 in ν1 and degree 8
in ν2, obtained by clearing the denominators of factors of ν1. For
connected regions separated by the boundary, whether or not the
reality condition is satisfied is well-defined.

The nature of this algebraic set near (0, 0) will be important to
understand. In particular, Q (0, 0) = 0, and

Qν1(0, 0) = 215a3
−1((s1 + s2)2 − s23)(s1 − s2 + s3)

× (s1 − s2 − s3) · (s21 + (r2 − r3)2)

× (s22 + (r1 − r3)2)(s23 + (r1 − r2)2), (100)

where a−1 is a degree-four homogeneous polynomial in the
variables r1, r2, r3, s1, s2, s3, which also occurs in the asymptotic
expansion of z given below. Notice that if s1 + s2 < s3 and a−1 ≠ 0,
then Qν1 ≠ 0, and the implicit function theorem implies that ν1 is
a locally well-defined function of ν2 near (ν1, ν2) = (0, 0), which
defines the curve, tangential to the line ν1 = 0, along which ρ+

and ρ− can change sign in the neighborhood of (0, 0).
However, if a−1 = 0, then Qν1(0, 0) = 0. Also Qν2(0, 0) =

Qν2ν2(0, 0) = 0, but A = Qν1ν1(0, 0) ≠ 0 and B = Qν2ν2ν2(0, 0) ≠

0, because the resultant of a−1 and A and the resultant of a−1 and B,
as polynomials in r1, are both nonzero. Therefore, when a−1 = 0,
there is a cusp at (0, 0) of the form

Q = Aν21 + Bν32 + O(ν31 , ν
2
1ν2, ν1ν

2
2 ). (101)

In this case, there is a region in which ν2 ≠ 0 and ν1 > 0 which is
not separated from the line ν2 = 0 by the cusp.

Now consider the various cases that may occur as ν1 → 0.

1. If ν2 ≠ 0, then, as ν1 → 0, Σ̂3 ≠ 0, and there is a positive root
z of Eq. (44) with the following expansion in powers of ν1,

z =
ν22

32ν21
+ O


1
ν1


. (102)

Using this value of z, we find that

ρ+ = −
ν22

8ν21
+ O


1
ν1


, (103)

and ρ− = O(1). So, whenever ν2 ≠ 0, ρ+ < 0 for ν1 sufficiently
small. Since the asymptotic expansion can be made uniform in
ν2 on any interval of ν2 bounded away ν2 = 0, it follows that
when ν2 ≠ 0, there is no region of points satisfying the reality
conditions that extends to (0, ν2).

2. If ν2 = 0, then

Σ̂3 =
b−1

ν1
+ b0 + b1ν1, (104)

where b−1, b0, and b1 are homogeneous polynomials of indeter-
minate sign and of degree five, three, and one, respectively, in
the variables r1, r2, r3, s1, s2, s3.
(a) If b−1 ≠ 0, then

z =
a−1

ν1
+ O (1) , (105)

where a−1 is the samepolynomial that appears in Eq. (100).
i. If a−1 > 0, then Eq. (105) gives z > 0, and

ρ+ = −
a−1

ν1
+ O (1) . (106)

Similarly, ρ− has the same leading-order behavior, so
that both ρ+ and ρ− are negative for ν2 = 0 and ν1 > 0
sufficiently small. Since Q (ν1, ν2) = 0 is a well-defined
smooth curve tangential to ν1 = 0 in the vicinity of

(0, 0), it follows that the reality condition cannot be
satisfied on either side of this curve for ν1 > 0, and so
no region of points satisfying the reality condition can
extend to (0, 0).

ii. If a−1 < 0, then Eq. (105) does not give a positive value
of z, instead the positive root z = O(1). In particular,

z =
b2

−1

8a2
−1

+ O(ν1). (107)

In this case,

ρ+ = −
c0

8a2
−1

+ O(ν1),

ρ− = −
4a−1

ν1
+ O(1),

(108)

where
c0 = (s23 − (s1 + s2)2)(s23 − (s1 − s2)2)

× (s21 + (r2 − r3)2) · (s22 + (r1 − r3)2)

× (s23 + (r1 − r2)2). (109)
Clearly c0 > 0 when s3 > s1 + s2, so that ρ− > 0 and
ρ+ < 0 as ν1 → 0. As in the case where a−1 > 0,
no region of points satisfying the reality condition can
extend to (0, 0).

iii. If a−1 = 0, then the curve defined by Q = 0 has a
cusp at (0, 0), and the line ν2 = 0 is on one side of
this cusp which is connected to a region where ν2 ≠ 0
and ν1 → 0. Once again, the reality condition cannot be
satisfied on either side of this cusp where ν1 > 0 in a
neighborhood of (0, 0).

(b) If b−1 = 0, then a−1 ≠ 0, because the resultant of a−1
and b−1, as polynomials in r1, is not zero. Therefore Q = 0
defines a smooth curve tangential to the line ν1 = 0 near
(0, 0). If b0 ≠ 0, or if b0 = 0 and b1 ≠ 0, it can be shown
by explicit calculation that the asymptotic series of both ρ+

and ρ− as ν1 → 0 are the same as calculated previously in
the case where b−1 ≠ 0. If b0 = b1 = 0, then Σ̂3 = 0
identically on the line ν2 = 0, and z is not defined. How-
ever, explicit calculation, using the expressions in Corol-
lary 3, shows that the reality constraint of Corollary 3 is not
satisfied as ν1 → 0. In fact the asymptotic expansions of
the corresponding expressions in Corollary 3 are the same
as those for ρ+ and ρ− when b−1 ≠ 0. This result can be
inferred from the continuity of the Dirichlet eigenvalues. In
any case, the reality constraint is not satisfied on both sides
of the curve Q = 0 in some neighborhood of (0, 0), and no
region of points satisfying the reality condition can extend
to (0, 0). �

Theorem 7. Suppose λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2
and λ5 = λ∗

6 = r3 + is3, with 0 < s1 ≤ s2 ≤ s3. The set
of initial conditions for the Dirichlet eigenvalues µ1 and µ2 which
satisfy the reality condition of Theorem 1 for the smooth two-phase
solution p = p(x, t) of theNLS equation (1) is parametrized by a single
compact connected region of {(ν1, ν2) ∈ R2

}. The maximum value of
ν1 = |p(x, t)|2 on this region is (s1 + s2 + s3)2, and the minimum
value of ν1 = |p(x, t)|2 on this region is (s1 + s2 − s3)2 > 0, if
s3 > s1 + s2, or zero, if s3 ≤ s1 + s2.

Proof. Lemma 17 shows that smooth two-phase solutions are
bounded, and Theorem 6 enumerates the four possible nonzero
bounds of ν1. Lemma 22 shows that ρ+ = 0 and ρ− = 0 cross
transversely at the point (ν1, ν2) = (ν

(4)
1 , ν

(4)
2 ), where z > 0.

These two one-dimensional algebraic sets divide a neighborhood
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of (ν1, ν2) = (ν
(4)
1 , ν

(4)
2 ) into four regions, exactly one of which

(to the left of (ν1, ν2) = (ν
(4)
1 , ν

(4)
2 ), since ν(4)1 must be a relative

maximum, by Lemma 18) contains an open set where ρ+ >
0, ρ− > 0, and z > 0. Thus there exists a region of initial
conditions for ν1 and ν2 and, hence, for the Dirichlet eigenvalues
µ1 and µ2, on which the reality condition is satisfied. Similarly,
Lemma 23 shows that when s3 > s1 + s2, there exists a region of
permissible initial conditions for ν1 and ν2 in a sector to the right
of the node (ν1, ν2) = (ν

(1)
1 , ν

(1)
2 ), since ν(1)1 is a relative minimum,

by Lemma 20.
Since the smooth bounded solution constructed in any region

must reach a maximum value of ν1 = |p(x, t)|2, and ν1 = ν
(4)
1 is

the only maximum possible, the closure of the connected region
where ρ+ > 0 and ρ− > 0, to the left of (ν1, ν2) = (ν

(4)
1 , ν

(4)
2 )

and bounded by the algebraic set of Eq. (49), must be the unique
compact connected region consisting of all the permissible initial
conditions of (ν1, ν2). When s3 ≤ s1 + s2, the minimum value of ν1
on this compact connected region is ν1 = 0, since all the nonzero
critical points (other than the maximum) are saddle points, by
Lemmas 19 and 20. When s3 > s1 + s2, Lemma 24 shows that
theminimum value of ν1 cannot be zero. Consequently, when s3 >
s1+s2, Lemmas 18, 19, and 20 show that theminimumof ν1 occurs
at (ν1, ν2) = (ν

(1)
1 , ν

(1)
2 ).

This compact connected region in the ν1 − ν2-plane parametri-
zes the permissible initial conditions for µ1 and µ2 through the
explicit expressions of the first and second symmetric-polynomial
constraints given in Corollaries 3 and 4. All smooth two-phase
solutions of the NLS equation (1) are bounded, and so they must
achieve a minimum and a maximum value of ν1 = |p(x, t)|2.
Therefore the square of the modulus of any solution on the region
of permissible values must oscillate between the maximum value
ν1 = (s1 + s2 + s3)2 and the minimum value of either ν1 =

(s1 + s2 − s3)2, when s3 > s1 + s2, or ν1 = 0, when s3 ≤ s1 + s2. �

The simple dependence of the minimum and the maximum of
the modulus of the solution on the branch points of the Riemann
surface is consistent with the limit of one-phase solutions, viz.,
s1 → 0, ν(2)1 → ν

(1)
1 and ν(3)1 → ν

(4)
1 , in which there exists

a single bounded solution [1] with minimum squared modulus
ν1 = (s2 − s3)2 and a maximum squared modulus ν1 = (s2 +

s3)2. Numerical simulations of genus-two solutions [3,32,33] are
also consistent with the result. For higher-phase solutions, an
analogous result would require the inclusion of higher-time flows
in the integrable NLS hierarchy. The spatial and temporal flows
of the scalar NLS equation are not sufficient to span the higher-
dimensional torus of three-phase or higher-phase solutions. In
general, the sum of the imaginary parts of the branch points of the
higher-genus Riemann surface is expected to be an upper bound
for the maximummodulus of the solution.

8. Two-phase solutions of the NLS equation

In this section, the smooth two-phase solution is constructed
for the NLS equation (1). The Dirichlet eigenvalues of the solution
were shown, for each fixed choice of the real curve K2 with
three pairs of complex-conjugate branch points, to be a single
compact connected two-dimensional manifold. As is well-known,
the Dubrovin equations for the Dirichlet eigenvalues linearize via
the Abel map onto the Jacobi variety of K2,

4it + d1 =

 µ1

λ1

dµ1
√

R(µ1)
+

 µ2

λ3

dµ2
√

R(µ2)
,

2ix − 4ic2t + d2 =

 µ1

λ1

µ1dµ1
√

R(µ1)
+

 µ2

λ3

µ2dµ2
√

R(µ2)
,

(110)

where

d1 =

 µ10

λ1

dµ1
√

R(µ1)
+

 µ20

λ3

dµ2
√

R(µ2)
,

d2 =

 µ10

λ1

µ1dµ1
√

R(µ1)
+

 µ20

λ3

µ2dµ2
√

R(µ2)
,

(111)

where the constants of integration d1 and d2 are not arbitrary but
are determined by an allowed pair of initial values µ10 and µ20
which satisfy, along with the initial values of the real parameters
ν1 and ν2, the algebraic constraints imposed by the invariant
algebraic curve. Moreover, this set of permissible values for d1
and d2 is partitioned into equivalence classes lying on distinct
non-intersecting two-real-dimensional planes in C2 formed by
translation along the linear flows of Eq. (110) on the Jacobi variety
of K2.

Solving Eqs. (110) for µ1 and µ2 is a special case of the Jacobi
inversion problem. The Appendix contains the details of a classical
method, based on the approach of Baker [27], of solving the Jacobi
inversion problem in terms of the Kleinian elliptic functions σ
and ζ defined on the genus-two Riemann surface K2. A particular
choice is made for the labeling of the branch points, viz., λ1 =

λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2, and λ5 = λ∗

6 = r3 + is3,
where r1 ≤ r2 ≤ r3, so that the canonical cycles are conveniently
placed as in Fig. 7 in the Appendix. The formulas in Lemma 18 for
the initial values of the Dirichlet eigenvalues will be used, since
these formulas are symmetric with respect to the ordering of the
real and imaginary parts of the branch points.

In particular, if u′
= (u′

1, u
′

2)
T , with

u′

1 =

 µ1

λ1

dµ1
√

R(µ1)
+

 µ2

λ3

dµ2
√

R(µ2)

= 4it + d1,

u′

2 =

 µ1

λ1

µ1dµ1
√

R(µ1)
+

 µ2

λ3

µ2dµ2
√

R(µ2)

= 2ix + 2iΛ1t + d2,

(112)

so that

u′
= iVx + iWt + d, (113)

where

V = (0, 2)T ,
W = (4, 2Λ1)

T ,

d = (d1, d2)T ,
(114)

and d1 and d2 are defined in Eq. (111), then Eq. (A.64) produces
simple formulas for the symmetric polynomials of µ1 and µ2,

µ1 + µ2 =
1
2
Λ1 − δ2 +

∂

∂u2
ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

 ,

µ1µ2 = −
1
8
Λ2

1 +
1
2
Λ2 + δ1 −

∂

∂u1

× ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

 ,

(115)

where δ1 and δ2 are constants of integration expressible in terms of
functions of the branch points. The solution p to the NLS equation
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(1) is obtained from the trace formulas in Eqs. (14) and (115), viz.,

∂

∂x
ln p = 2i(µ1 + µ2)− iΛ1

= 2i
∂

∂u2
ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

− 2iδ2

=
∂

∂x
ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

− 2iδ2,

∂

∂t
ln p = −4iµ1µ2 + 2iΛ2 −

1
2
iΛ2

1 +Λ1
∂

∂x
ln p

= 4i
∂

∂u1
ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

+ 2iΛ1

∂

∂u2

× ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

− 4iδ1 − 2iδ2Λ1

=
∂

∂t
ln

σ

u′

+


∞
+

λ6
du


σ

u′ +


∞−

λ6
du

− 4iδ1 − 2iδ2Λ1.

(116)

Hence, the two-phase solution to the NLS equation (1) is

p(x, t) =


ν1(0, 0)eiφ(x,t)

σ

β−


σ (β+)

σ

iVx + iWt + β+


σ (iVx + iWt + β−)

(117)

where

β+
=

 µ10

λ1

du +

 µ20

λ3

du +


∞

+

λ6

du,

β−
=

 µ10

λ1

du +

 µ20

λ3

du +


∞

−

λ6

du,

φ(x, t) = −2δ2x − (4δ1 + 2δ2Λ1)t + φ0,

(118)

δ1, δ2 ∈ C are given explicitly by Eq. (A.66), and φ0 ∈ R is an
arbitrary real constant. Note that δ1 and δ2 in φ are, in general,
complex because there is also a complex phase in the ratio of the
σ functions. These complex phases cancel out, so that the solution
remains bounded for all x and t . The values of ν1(0, 0) > 0 and
(µ10, s10), (µ20, s20) ∈ K2 can be explicitly given in terms of
the branch points of the curve K2 by the formulas derived in the
previous section.

It is convenient to remove the exponential factors from the σ
functions in Eq. (117) and write the two-phase solution in terms of
Riemann theta functions. Using the definition of the theta function
given in the Appendix, the solution in Eq. (117) is

p(x, t) =


ν1(0, 0)eiξ(x,t)

θ
 1
2ω

−1β−


θ
 1
2ω

−1β+


×
θ
 1
2ω

−1(iVx + iWt + β+)


θ
 1
2ω

−1(iVx + iWt + β−)
 , (119)

where

ξ(x, t) = φ(x, t)+ (2α114t + (α12 + α21)(2x + 2Λ1t))


∞
+

∞−

du1

+ (2α22(2x + 2Λ1t)+ (α12 + α21)4t)


∞
+

∞−

du2. (120)

Lemma 25. The exponential factor eiξ(x,t) in Eq. (119) is a phase
factor of modulus 1, viz.,

ξ(x, t) = κ1x + κ2t + φ0, (121)

where the wavenumbers κ1, κ2 ∈ R are given by

κ1 = 2

λ1 + λ∗

1 −
1
2
Λ1


− (ω−1)12


θ+

1

θ+
−
θ−

1

θ−


− (ω−1)22

×


θ+

2

θ+
−
θ−

2

θ−


,

κ2 = 4


−|λ1|
2
−

1
8
Λ2

1 +
1
2
Λ2


− 2(ω−1)11


θ+

1

θ+
−
θ−

1

θ−


− 2(ω−1)21


θ+

2

θ+
−
θ−

2

θ−


+Λ1


2

λ1 + λ∗

1 −
1
2
Λ1


− (ω−1)12


θ+

1

θ+
−
θ−

1

θ−


− (ω−1)22


θ+

2

θ+
−
θ−

2

θ−


,

(122)

and φ0 ∈ R is an arbitrary phase.

Proof. Since ω−1 is purely imaginary (see the Appendix), it is
sufficient to show that the differences of logarithmic derivatives
of θ of the form, for j = 1, 2,

θ+

j

θ+
−
θ−

j

θ−
(123)

are also purely imaginary. Consider the complex conjugate
1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du

∗

= −
1
2
ω−1


∞

+

λ5

du +

 λ1

λ4

du



= −
1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du


− vλ6,λ5 − vλ1,λ2 − vλ3,λ4

= −
1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du


+ m + τm′, (124)

where the sum of the half-period characteristics is zero, i.e., an
integer lattice translation for somem,m′

∈ Z2. Similarly,
1
2
ω−1


∞

−

λ6

du +

 λ2

λ3

du

∗

= −
1
2
ω−1


∞

−

λ6

du +

 λ2

λ3

du


+ m + τm′, (125)

with the same m,m′
∈ Z2 as previously, since we can integrate

along the same paths in the calculation of the half-integer
characteristics.

Now using the fact that θ is an even function and the partial
derivatives θ1 and θ2 are odd functions, and the transformation
property of the logarithmic derivatives in Eq. (A.29), we obtain, for
j = 1, 2,
θ+

j

θ+

∗

= −2π im′

j −
θ+

j

θ+
,

θ−

j

θ−

∗

= −2π im′

j −
θ−

j

θ−
.

(126)
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Hence
θ+

j

θ+
−
θ−

j

θ−

∗

= −


θ+

j

θ+
−
θ−

j

θ−


. � (127)

Finally, all the previous results can be summarized in the
following theorem, in which the solution of the NLS equation
(1) is explicitly constructed in terms of the branch points of
the Riemann surface K2 and the correct initial values for the
Dirichlet eigenvalues, so that all reality conditions are satisfied.
Moreover simple formulas for the minimum and the maximum of
themodulus of the solution are determined from Theorem7, based
solely on the imaginary parts of the branch points of K2.

Theorem 8. Each smooth two-phase solution of the focusing NLS
equation (1) is a two-real-dimensional torus submanifold, modulo a
circle of complex phase factors, of the Jacobi variety of a nonsingular
genus-two Riemann surface K2, given by Eq. (22), with branch points
λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2, λ5 = λ∗

6 = r3 + is3, where
r1, r2, r3 ∈ R and s1, s2, s3 > 0, as labeled in Fig. 7. The solution can
be written as a ratio of theta functions associated with K2, as defined
in the Appendix, viz.,

p(x, t) = (s1 + s2 + s3)eiξ(x−x0,t−t0)
θ
 1
2ω

−1β−


θ
 1
2ω

−1β+


×
θ
 1
2ω

−1U+(x, t)


θ
 1
2ω

−1U−(x, t)
 , (128)

where

U+(x, t) = iV (x − x0)+ iW (t − t0)+ β+,

U−(x, t) = iV (x − x0)+ iW (t − t0)+ β−,
(129)

with V = (0, 2)T , W = (4, 4(r1 + r2 + r3))T ,

β+
=

 (µ10,−
√

R(µ10))

λ1

du +

 (µ20,
√

R(µ20))

λ3

du

+


∞

+

λ6

du,

β−
=

 (µ10,−
√

R(µ10))

λ1

du +

 (µ20,
√

R(µ20))

λ3

du

+


∞

−

λ6

du,

(130)

where the initial values of the Dirichlet eigenvalues (µ10,
−

√
R(µ10)), (µ20,

√
R(µ20)) ∈ K2 are given by the symmetric ex-

pressions in Eqs. (71) and (72) of Lemma 18, the phase ξ(x, t) is given
by Eq. (121), and (x0, t0) ∈ R2 is an arbitrary location for the maxi-
mum modulus of the solution. Moreover, if the imaginary parts of the
branch points are re-labeled, if necessary, so that 0 < s1 ≤ s2 ≤ s3,
then the two-phase solution given by Eq. (128) has maximum mod-
ulus s1 + s2 + s3 > 0 and minimum modulus s3 − s1 − s2 > 0, if
s3 > s1 + s2, or zero, if s3 ≤ s1 + s2.

9. Example solutions

Two solutions are constructed using the formula of Theorem 8.
Both solutions are constructed using Maple and a simple integra-
tion algorithm, based on Simpson’s rule, to compute the necessary
contour integrals on the Riemann surface K2. For integrals involv-
ing points over infinity or branch points, Maple’s algcurve package
is used to compute a Puiseux expansion near the point of interest,
which is integrated directly using Maple’s int command [34].

Fig. 1. Modulus of a solution of the NLS equation (1) with minimum 0 and
maximum 3 for (x, t) ∈ [−0.5, 0.5]×[−0.5, 0.5], on a 100×100 grid. Transparent
horizontal planes have been added to the graph at the height of the minimum and
the maximum. The six branch points have imaginary parts with absolute values
equal to s1 = 1, s2 = 1, and s3 = 1.

Fig. 2. Density plot of the same solution of the NLS equation (1) as in Fig. 1. The
height of the function is indicated by the colors red, green, and blue scaled to the
interval [0, 3]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

In Figs. 1, 2, and 3, the modulus of the same solution of the NLS
equation (1) is constructed using Eq. (128). The solution is graphed
using three different methods: a three-dimensional plot, a density
plot, and a plot of the list of values for the modulus. The branch
points are chosen to be

− 2 + i,−2 − i,−1 + i,−1 − i, 1 + i, 1 − i, (131)

so that the imaginary parts of the branch points are all equal, viz.,
s1 = 1, s2 = 1, and s3 = 1. According to Theorem 8, the maximum
modulus is s1+s2+s3 = 3, and theminimummodulus is 0 because
s3 < s1 + s2.

In Figs. 4, 5, and 6, the modulus of a second solution is
constructed using Eq. (128). In this case the branch points are
chosen to be

− 2 + 3i,−2 − 3i,−1 + i,−1 − i, 1 + i, 1 − i, (132)
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Fig. 3. Plot of the list of values of the modulus of the solution of the NLS equation
(1) in Figs. 1 and 2. The values in the list are ordered by successive cross-sections
of constant x of the surface in Fig. 1. Four occurrences of the minimum and three
occurrences of the maximum can be clearly seen.

Fig. 4. Modulus of a solution of the NLS equation (1) with minimum 1 and
maximum 5 for (x, t) ∈ [−0.5, 0.5]×[−0.5, 0.5], on a 100×100 grid. Transparent
horizontal planes have been added to the graph at the height of the minimum and
the maximum. The six branch points have imaginary parts with absolute values,
ordered from least to greatest, equal to s1 = 1, s2 = 1, and s3 = 3.

so that the imaginary parts of the branch points, in increasing
order, are s1 = 1, s2 = 1, and s3 = 3. Thus the maximummodulus
is s1 + s2 + s3 = 5, and the minimummodulus is s3 − s1 − s2 = 1,
since s3 > s1+s2. Recall that in Theorem 6 the labeling of the three
imaginary parts is chosen so that 0 < s1 ≤ s2 ≤ s3, and that the
minimum modulus and the maximum modulus are independent
of the (possibly different) labeling of the branch points shown in
Fig. 7 and used in the explicit construction of the solution.

10. Conclusion

Simple formulas, in terms of the imaginary parts of the branch
points, have been found for the minimum modulus and the
maximum modulus of each smooth two-phase solution of the
scalar focusing cubic NLS equation (1). The solution of the NLS
equation is written as a ratio of theta functions associated with the
Riemann surface of the invariant spectral curve. The theta function
formula for the two-phase solution is new in the following sense:
all the parameters in the solution are written explicitly in terms

Fig. 5. Density plot of the same solution of the NLS equation (1) as in Fig. 4. The
height of the function is indicated by the colors red, green, and blue scaled to the
interval [1, 5]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Plot of the list of values of the modulus of the solution of the NLS equation
(1) in Figs. 4 and 5. The values in the list are ordered by successive cross-sections
of constant x of the surface in Fig. 4. Six occurrences of the minimum and seven
occurrences of the maximum can be clearly seen.

of the branch points of the genus-two Riemann surface and the
initial values of the Dirichlet eigenvalues which satisfy the reality
conditions. The Appendix provides the details of the solution of
the Jacobi inversion problem as it applies to the real genus-two
Riemann surface of the integrable NLS equation (1).

The simple dependence of the minimum and the maximum
amplitudes of the two-phase solution on the imaginary parts of the
branch points is consistent with known results for zero-phase and
one-phase solutions [1] and with numerical simulations of two-
phase solutions [3,32,33]. For higher-phase solutions of the scalar
cubic NLS equation (1), the two-real-dimensional linear flow on
the Jacobi variety will not span the higher-dimensional real torus
of the solution, as it does in the two-dimensional case, so the sum
of the imaginary parts of the branch points is expected to be only
an upper bound on the modulus of the quasi-periodic solution.

The representation obtained in this manuscript may be useful
in characterizingmodulations of two-phase solutions, for example,
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Fig. 7. Basis of homology cycles for a two-phase solution of the NLS equation (1).

in the vicinity of a gradient catastrophe in which spikes are formed
which are limits of two-phase solutions [2,3]. Morework is needed
to extend the current results to the scalar defocusing cubic NLS
equation and the Manakov system of coupled NLS equations [7,8,
35,36].

It is well-known [9–14,18,20,22,23] how to obtain the solution
of the NLS equation in terms of theta functions associated with
the Riemann surface of an invariant spectral curve. However,
in previous studies, the reality conditions on the initial values
of the Dirichlet eigenvalues are either satisfied in the sense of
an existence result or satisfied at the level of quantities defined
on the Jacobi variety of the Riemann surface. In this paper, an
alternative effective integration is implemented, analogous to the
results for elliptic solutions obtained by Kamchatnov [1,24]. Using
the explicit solution method for a quartic polynomial equation
satisfied by the Dirichlet eigenvalues and the explicit solution of
the Jacobi inversion problem for a genus-two Riemann surface,
the reality conditions on the integration constants are explicitly
satisfied in terms of the physically-meaningful modulus and
wavenumber of the solution. Consequently, a new effective theta
function representation of the solution is constructed in which
the parameters in the solution are explicitly constructed from the
branch points of the Riemann surface and the real initial values of
the Dirichlet eigenvalues. Moreover, simple new formulas for the
minimummodulus and the maximummodulus of the solution are
found in terms of the imaginary parts of the branch points.

Appendix. The Jacobi inversion problem

The inversion of the Abelian integrals in Eq. (29) for µ1 =

µ1(x, t) and µ2 = µ2(x, t) is called the Jacobi inversion
problem. Classically [27] the inversion problem for the symmetric
polynomials µ1 + µ2 and µ1µ2 was solved in terms of the
Kleinian sigma and zeta functions, defined on a genus-two
Riemann surface corresponding to a canonical polynomial of
degree five, which generalize the more familiar elliptic functions,
i.e., the Weierstrass sigma and zeta functions. A more modern
treatment [28] shows how the Kleinian elliptic functions can be
used to solve the inversion problem for hyperelliptic Riemann
surfaces corresponding to even-degree polynomials, such as K2.
Consequently, some new details are presented in the Appendix
that are necessary to calculate all the required quantities in the
explicit construction of the two-phase solution of the focusing NLS
equation (1), whose invariant polynomial is of degree six in the
spectral parameter.

A.1. Differential identities on the Riemann surface

In order to solve the Jacobi inversion problem (29), several
definitions and fundamental identities involving differentials
on the Riemann surface are needed. The goal of the present
manuscript is to keep technicalities to a minimum and follow as
closely as possible the classical approach of Baker [27], while using
the more modern language found in [9,28]. In general, most of the
proofs of the statements in the Appendix are found in [27] or [28]
and are omitted from the Appendix. However, in some cases proofs
are sketched in order to clarify how the result works in this specific
application.

It is assumed that K2 is a nonsingular genus-two Riemann
surface satisfying the reality condition, viz., there are six distinct
branch points forming three complex-conjugate pairs. A canonical
basis of homology cycles, {a1, a2; b1, b2}, is chosen to have the
following intersection properties a1 ◦ a2 = b1 ◦ b2 = 0 and
a1 ◦ b1 = a2 ◦ b2 = 1, as shown in Fig. 7. In particular, it is
convenient to choose the ordering of the branch points, without
loss of generality, so that the real parts are labeled in increasing
order, r1 ≤ r2 ≤ r3, where λ1 = λ∗

2 = r1 + is1, λ3 = λ∗

4 = r2 + is2,
and λ5 = λ∗

6 = r3 + is3, and s1, s2, s3 > 0. Recall that this is
a different convention than was used to label the branch points
in Theorem 6, where the imaginary parts, not the real parts, were
labeled in increasing order.

The action of the natural hyperelliptic involution ι on K2 is
extended in a natural way to the homology cycles, and the cycles
are chosen such that

ι(a1) = −a1,
ι(a2) = −a2,
ι(b1) = −b1,
ι(b2) = −b2.

(A.1)

In particular, the arrangement of cycles is chosen as shown in
Fig. 7 for the case of three complex-conjugate pairs of branch
points which satisfy the reality conditions for the NLS equation (1).
Similarly, the natural action of the anti-holomorphic involution ∗

on the cycles is

∗(a1) = −a1,
∗(a2) = −a2,
∗(b1) = b1 + a2,
∗(b2) = b2 + a1.

(A.2)

Now consider the two holomorphic integrals that appear in the
Jacobi inversion problem (29),

du1 =
dλ
w
, du2 =

λdλ
w
. (A.3)

The natural action of the anti-holomorphic involution on these two
differentials is ∗dui = du∗

i , for i = 1, 2, where du∗

i denotes the
complex conjugate of the differential. The periods of the above
differentials around the basis cycles are defined, for i, j = 1, 2, as

aj

dui = 2ωij,


bj

dui = 2ω′

ij. (A.4)

Notice that for the given choice of the basis cycles,

ω∗

ij =


aj

du∗

i =


aj

∗dui =


∗(aj)

dui =


−aj

dui = −ωij, (A.5)

so that ℜ(ωij) = 0.
A normalized basis of holomorphic differentials, canonically

dual to the basis of homology cycles, can now be constructed. Let,
for i = 1, 2,

dvi =

2
j=1

1
2
(ω−1)ijduj, (A.6)
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then the periods are normalized in the sense that, for i, j = 1, 2,
aj

dvi = δij,


bj

dvi = τij, (A.7)

where δij is the Kronecker delta symbol. A standard result, using
Riemann’s bilinear relations, is that the determinant of the matrix
ω = (ωij) is nonzero, and the matrix

τ = ω−1ω′ (A.8)

is symmetric with a positive definite imaginary part.
With the particular choice of the canonical cycles shown in

Fig. 7, the symmetry of K2 implies further information about the
real part ℜ(τ ) of τ , viz.,

τ ∗

ij =


bj

dv∗

i

=


bj

2
k=1

1
2
(ω−1)∗ikdu

∗

k

= −

2
k=1

1
2
(ω−1)ik


bj

∗duk

= −

2
k=1

1
2
(ω−1)ik


∗(bj)

duk

= −

2
k=1

1
2
(ω−1)ik


bj+âj

duk

= −

2
k=1

1
2
(ω−1)ik(2ω′

kj + 2ω̂kj)

= −τij − δ̂ij, (A.9)

where â1 = a2 and â2 = a1, so that the first and second columns
of ω̂ are the same as the second and first columns, respectively, of
ω, and

δ̂ij =


0 1
1 0


. (A.10)

Therefore

ℜ(τ ) = −
1
2


0 1
1 0


. (A.11)

We now introduce two differentials of the second kind
associated with du1 and du2, see [27], viz.,

dr1 =
4λ4 − 3Λ1λ

3
+ 2Λ2λ

2
−Λ3λ

4w
dλ,

dr2 =
2λ3 −Λ1λ

2

4w
dλ.

(A.12)

These differentials are holomorphic except for poles of the second
kind at the points at infinity, and they satisfy the following identity
of two-differentials,
∂

∂z
w + s
λ− z

1
2w

dz dλ+ du1(λ)dr1(z)+ du2(λ)dr2(z)

=
F(λ, z)+ 2ws

4(λ− z)2
dλ
w

dz
s
, (A.13)

where w2
= R(λ), s2 = R(z), and the symmetric function

F(λ, z) = F(z, λ), where

F(λ, z) = 2Λ6 −Λ5(λ+ z)+ λz(2Λ4 −Λ3(λ+ z))

+ λ2z2(2Λ2 −Λ1(λ+ z))+ 2λ3z3. (A.14)

The periods of the differentials dr1 and dr2 are defined, for i, j =

1, 2, as
aj

dri = −2ηij,


bj

dri = −2η′

ij. (A.15)

The periods satisfy the following relations,

ωω′ T
− ω′ωT

= 0,
ηη′ T

− η′ηT = 0,

ωη′ T
− ω′ηT = −

π i
2
I,

(A.16)

where ωT denotes the transpose of the matrix ω, and I is the
2 × 2 identity matrix. Eq. (A.13) shows that the symmetric two-
differential on the right-hand side of the equation gives Klein’s
symmetric integral of the third kind,

K (λ, a; z, b) =

 λ

a

 z

b

F(λ, z)+ 2ws
4(λ− z)2

dλ
w

dz
s
, (A.17)

with logarithmic infinities of coefficients 1 and −1 respectively at
λ = z and λ = b. Notice that the symmetry of the integrand
implies that K (λ, a; z, b) = K (z, b; λ, a).

Definition 2. The normalized differential of the third kind having
a simple pole of residue+1 at the location λ = z, simple pole with
residue −1 at the location λ = b, and zero periods around the
cycles a1 and a2 is denoted by dΠz,b. The normalized differential
of the second kind having a single pole of order two at λ = z
with coefficient 1 and zero periods around the cycles a1 and a2 is
denoted by dΓz .

Notice that dΓz can be obtained from dΠz,b by differentiation of
the latter with respect to the parameter z. Thus an application of
Riemann’s bilinear relations using dvi, i = 1, 2, and dΠz,b shows
that

b1

dΓz = 2π i
dv1
dz
(z),


b2

dΓz = 2π i
dv2
dz
(z). (A.18)

Another application of Riemann’s bilinear relations to dΠλ,a and
dΠz,b, demonstrates the following symmetry, λ

a
dΠz,b =

 z

b
dΠλ,a. (A.19)

Since K (λ, a; z, b) is an integral of the third kind, it can be written
in terms of the normalized integral of the third kind and two
linearly independent integrals of the first kind, leading to the
following definition, in which the symmetry of K and Eq. (A.19)
are used.

Definition 3. Let α be the 2 × 2 symmetric matrix defined by the
identity

K (λ, a; z, b) =

 λ

a
dΠz,b − 2

2
i=1

2
j=1

αij

×

 λ

a
dui

 z

b
duj. (A.20)

Differentiation of the above identity with respect to local
parameters λ and z gives the following identity between two-
differentials,

F(λ, z)+ 2ws
4(λ− z)2

dλ
w

dz
s

= dΓz(λ)dz − 2
2

i=1

2
j=1

αij

× dui(λ)duj(z). (A.21)
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If the roles of λ and z are interchanged in Eq. (A.13), using the
symmetry of the two-form on the right-hand side, then Eq. (A.21),
can be re-written as

du1(z)dr1(λ)+ du2(z)dr2(λ)+ 2
2

i=1

2
j=1

αijdui(λ)duj(z)

= dΓz(λ)dz −
∂

∂λ

s + w

z − λ

dλdz
2s

. (A.22)

Integration in λ of Eq. (A.22) about the basis cycles ak and bk, for
k = 1, 2, gives two identities of the following differentials of z,

−2η1kdu1 − 2η2kdu2 + 4
2

i=1

2
j=1

αij ωik duj = 0,

−2η′

1kdu1 − 2η′

2kdu2 + 4
2

i=1

2
j=1

αijw
′

ikduj = 2π i dvk.

(A.23)

Since du1 and du2 are linearly independent, the first of the
identities in Eq. (A.23) implies

−2η1k + 4α11ω1k + 4α21ω2k = 0,
−2η2k + 4α12ω1k + 4α22ω2k = 0. (A.24)

Since α12 = α21, the preceding equations imply a key relation
between the period matrices of the differentials {du1, du2} and
{dr1, dr2} which will be essential in defining the Kleinian sigma
function, viz.,

α =
1
2
ηω−1. (A.25)

A.2. Riemann theta functions

The Kleinian sigma function will be defined using the Riemann
theta function associated with the period matrix τ of the
normalized differentials dv1 and dv2.

Definition 4. The theta function of v ∈ C2, associated with the
period matrix τ , is

θ(v) =

∞
n1=−∞

∞
n2=−∞

e2π i(v1n1+v2n2)+π i(τ11n
2
1+2τ12n1n2+τ22n22)

=

∞
n=−∞

e2π inv+π inτn, (A.26)

with quasiperiodicity on the period lattice C2/(I

τ) given by

θ(v + m + τm′) = e−2π im′

v+ 1

2 τm
′

θ(v), (A.27)

where m,m′
∈ Z2.

It is a well-known fact that, since τ has a positive definite
imaginary part, the Riemann theta function θ(v) is an entire
function of v ∈ C2. Moreover, θ(v) is not identically zero, since it
has non-vanishing Fourier coefficients in the special case in which
it is considered as a Fourier series in the real variable v ∈ R2.

Definition 5. The partial derivatives of θ are denoted by

θ1(v) =
∂θ

∂v1
(v),

θ2(v) =
∂θ

∂v2
(v).

(A.28)

Moreover, the logarithmic derivatives of θ possess lattice transfor-
mations of the form, for j = 1, 2,

∂ ln θ
∂vj

(v + m + τm′) = −2π im′

j +
∂ ln θ
∂vj

(v). (A.29)

Lemma 26. The choice of the canonical cycles obeying the conjugate
relations (A.2) implies that the real part of τ satisfies Eq. (A.11) and,
hence, it can be shown that

θ(v)∗ = θ(v∗). (A.30)

Similarly, for i = 1, 2,

θ1(v)
∗

= θ1(v
∗),

θ2(v)
∗

= θ2(v
∗).

(A.31)

Theorem 9. The theta function is zero at odd half-integer periods,
viz., if m,m′

∈ Z2 and mm′
= m1m′

1 + m2m′

2 is an odd integer,
then

θ


1
2
m +

1
2
τm′


= 0.

Proof.

θ


1
2
m +

1
2
τm′


=

∞
n=−∞

eπ imn+π i

n+ 1

2m
′

τ

n+ 1

2m
′

−
π i
4 m′τm′

,

=

∞
n=−∞

e−π imn+π i

n− 1

2m
′

τ

n− 1

2m
′

−
π i
4 m′τm′

,

= e−iπmm′
∞

n=−∞

e−π im(n−m′)+π i

n−m′

+
1
2m

′

τ

n−m′

+
1
2m

′

−
π i
4 m′τm′

,

= e−iπmm′
∞

n=−∞

e−π imn+π i

n+ 1

2m
′

τ

n+ 1

2m
′

−
π i
4 m′τm′

,

= e−iπmm′
∞

n=−∞

e−2π imn+π imn+π i

n+ 1

2m
′

τ

n+ 1

2m
′

−
π i
4 m′τm′

,

= e−iπmm′
∞

n=−∞

eπ imn+π i

n+ 1

2m
′

τ

n+ 1

2m
′

−
π i
4 m′τm′

,

= e−iπmm′

θ


1
2
m +

1
2
τm′


, (A.32)

where the summation index is renamed, firstly, n → −n and,
secondly, n → n − m′, without change to the sum, which is over
all possible integer pairs n ∈ Z2. �

Definition 6. The half-integer periods are denoted as

1
2


m′

1 m′

2
m1 m2


=

1
2


m1 + τ11m′

1 + τ12m′

2
m2 + τ21m′

1 + τ22m′

2


=

1
2
m +

1
2
τm′, (A.33)

where m,m′
∈ Z2.

Theorem 10. The fifteen integrals

vλi,λj =

 λi

λj

dv, (A.34)
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for i, j = 1, . . . , 6, with i ≠ j, of the normalized holomorphic
differentials dv = (dv1, dv2)t on the dissected Riemann surface K2
constructed from the canonical homology cycles in Fig. 7 between the
fifteen pairs of distinct branch points of the Riemann surface K2 are
equal to fifteen distinct nonzero half-integer periods, as follows,

vλ1,λ2 =
1
2


0 0
1 0


, vλ1,λ3 =

1
2


−1 1
0 −1


,

vλ1,λ4 =
1
2


−1 1
0 0


,

vλ1,λ5 =
1
2


−1 0
0 −1


, vλ1,λ6 =

1
2


−1 0
1 0


,

vλ2,λ3 =
1
2


−1 1
−1 −1


,

vλ2,λ4 =
1
2


−1 1
−1 0


, vλ2,λ5 =

1
2


−1 0
−1 −1


,

vλ2,λ6 =
1
2


−1 0
0 0


,

vλ3,λ4 =
1
2


0 0
0 1


, vλ3,λ5 =

1
2


0 −1
0 0


,

vλ3,λ6 =
1
2


0 −1
1 1


,

vλ4,λ5 =
1
2


0 −1
0 −1


, vλ4,λ6 =

1
2


0 −1
1 0


,

vλ5,λ6 =
1
2


0 0
1 1


.

(A.35)

Proof. By examining the dissection of the Riemann surface K2
given by Fig. 7, it is possible to integrate between any two branch
points on the dissected Riemann surface while remaining on the
lower sheet of the two-sheeted covering, without crossing any of
the basis cycles. However the same integral can be performed by
tracing the same path projected on the upper sheet for which the
integrand is the same except for multiplication by −1 due to the
action of the hyperelliptic involution on dv. By keeping track of
the crossings of the homology cycles on the upper sheet (so as to
remain on the dissected Riemann surface), the equality of the two
integration procedures leads to the stated results. �

Corollary 5.

θ(vλ1,λ3) = θ(vλ1,λ6) = θ(vλ2,λ4) = θ(vλ2,λ5) = θ(vλ3,λ6)

= θ(vλ4,λ5) = 0. (A.36)

Proof. Theorem 9 states that the theta function is zero at the
odd half-integer periods, which can be identified from the list in
Theorem 10. �

Lemma 27. If θ
 λ

λ6
dv

is not identically zero, then it has precisely

two simple zeros at λ = λ1, λ3.

Proof. The existence of exactly two zeros follows from the
standard technique of integrating the logarithmic derivative of
θ
 λ

λ6
dv

around the edges of the dissected Riemann surface. The

two zeros can then be identified from Corollary 5. �

Lemma 28. θ
 λ

λ6
dv

is identically zero if and only if θ(0) = 0.

Proof. If θ(0) = 0, then θ
 λ

λ6
dv

has three zeros λ = λ1, λ3,

and λ = λ6. The result follows immediately from Lemma 27. �

Lemma 29. θ(0) ≠ 0 and, hence, θ
 λ

λ6
dv

is not identically zero.

Proof. By way of contradiction, assume that θ(0) = 0, then it can
be shown (see Baker [27, pp. 33–34]) that if θ

 λ
P dv


is identically

zero for all λ, P ∈ K2, then θ(v) is itself identically zero as a
function of v ∈ C2. Since θ(v) is not identically zero, there must
exist some P0 ∈ K2 such that θ

 λ
P0

dv

is not identically zero.

However, by the same reasoning of Lemma 27, θ
 λ

P0
dv


has
exactly two zeros, one of which is λ = P0. By Lemma 28 and the
evenness of θ(v), we see that λ = λ6 is a second zero. However,
Corollary 5 is symmetric with respect to the six branch points,
which means that the results for λ6 in Lemmas 27 and 28 have
analogous statements for each of the branch points. This means
that each of the six branch points of K2 is a zero of θ

 λ
P0

dv

, but

the function can only have two zeros unless it is identically zero, a
contradiction. Therefore θ(0) ≠ 0. Finally, Lemma 28 shows that
θ
 λ

λ6
dv

is not identically zero. �

Lemma 30. If z1 ≠ z2, then θ
 λ

λ6
dv −

 z1
λ1

dv −
 z2
λ3

dv


has
precisely two simple zeros at λ = z1, z2 ∈ K2.

Proof. See Baker [27] and use the fact that θ
 λ

λ6
dv


is not
identically zero. �

Lemma 31. θ(e) = 0 if and only if λ ∈ K2 such that

e =

 λ

λ6

dv +

 λ1

λ3

dv.

The set of e ∈ C2/(I

τ) having this property is called the

theta divisorΘ . The theta divisor is a one-complex-dimensional sub-
variety of the two-complex-dimensional period lattice C2/(I


τ).

Proof. See Baker [27] and use the fact that θ
 λ

λ6
dv


is not
identically zero. �

Lemma 32. Suppose e ∉ Θ , then θ
 λ

λ6
dv − e


is not identically

zero and has precisely two zeros λ = z1, z2 ∈ K2. Moreover, up to
addition of integer multiples of periods,

e =

 z1

λ1

dv +

 z2

λ3

dv. (A.37)

Proof. See Baker [27] and use the fact that θ
 λ

λ6
dv


is not
identically zero. �

Thus, with the exception of the one-complex-dimensional
variety e ∈ Θ , the points (z1, s1), (z2, s2) ∈ R that satisfy Eq. (A.37)
may be viewed as well-defined functions of the independent
variable e ∈ C2/(I


τ).

A.3. Kleinian elliptic functions

Definition 7. The fundamental Kleinian sigma function σ of u ∈

C2 is

σ(u) = e
1
2 uηω

−1uθ


1
2
ω−1u


, (A.38)

with transformations on the period lattice C2/(2ω


2ω′) given
by, for r = 1, 2,

σ(u1 + 2ω1r , u2 + 2ω2r) = e2η1r (u1+ω1r )+2η2r (u2+ω2r )σ(u),
σ (u1 + 2ω′

1r , u2 + 2ω′

2r) = e2η
′
1r (u1+ω

′
1r )+2η′

2r (u2+ω
′
2r )σ(u).

(A.39)
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In general, if m = (m1,m2)
T and m′

= (m′

1,m
′

2)
T are two couples

of integers and

Ωm = 2ωm + 2ω′m′, Hm = 2ηm + 2η′m′, (A.40)

then

σ(u +Ωm) = eHm

u+ 1

2Ωm

−iπmm′

σ(u). (A.41)

Note that the sigma function can be multiplied by a constant
factor independent of u without altering any of the results of this
paper. The simplest normalization sufficient to accomplish the
Jacobi inversion has been chosen. The definition of the Kleinian
sigma function is motivated by the following identities between
integrals on the Riemann surface.

Firstly, Eq. (A.20) implies

K (λ, a; z1, b1)+ K (λ, a; z2, b2)

−

 λ

a
dΠz1,b1 −

 λ

a
dΠz2,b2

= −2
2

i=1

2
j=1

αij

 λ

a
dui

 z1

b1
duj +

 z2

b2
duj


. (A.42)

Secondly, the identity λ

a
dΠz1,b1 +

 λ

a
dΠz2,b2

= log
θ
 λ

λ6
dv −

 z1
λ1

dv −
 z2
λ3

dv

θ
 a

λ6
dv −

 b1
λ1

dv −
 b2
λ3

dv


θ
 λ

λ6
dv −

 b1
λ1

dv −
 b2
λ3

dv

θ
 a

λ6
dv −

 z1
λ1

dv −
 z2
λ3

dv
 , (A.43)

follows from considering the function

θ
 λ

λ6
dv −

 z1
λ1

dv −
 z2
λ3

dv


θ
 λ

λ6
dv −

 b1
λ1

dv −
 b2
λ3

dv


× exp


−

 λ

a
dΠz1,b1 −

 λ

a
dΠz2,b2


,

which must be constant because it has no zeros and no poles and
zero periods around all homology basis cycles. Therefore it is equal
to its value when λ = a. A similar conclusion follows even if only
the periods around a1 and a2 are zero and the periods around b1
and b2 are constant (but not necessarily zero).

The two identities in Eqs. (A.42) and (A.43) can be written in
terms of the Kleinian sigma function (A.38), using the fact that
α =

1
2ηω

−1, as

K (λ, a; z1, b1)+ K (λ, a; z2, b2)

= log
σ
 λ

λ6
du −

 z1
λ1

du −
 z2
λ3

du

σ
 a

λ6
du −

 b1
λ1

du −
 b2
λ3

du


σ
 λ

λ6
du −

 b1
λ1

du −
 b2
λ3

du

σ
 a

λ6
du −

 z1
λ1

du −
 z2
λ3

du
 , (A.44)

where du = (du1, du2)
T and dv = (dv1, dv2)T .

Now Eq. (A.13), in which we interchange (λ, a) and (z, b) using
the symmetry of the expression, and Eq. (A.17) imply

K (λ, a; z1, b1)+ K (λ, a; z2, b2)

=

 z1

b1

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz +

 z2

b2

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz

+

 z1

b1
du1 +

 z2

b2
du1

 λ

a
dr1

+

 z1

b1
du2 +

 z2

b2
du2

 λ

a
dr2. (A.45)

The identities in Eqs. (A.44) and (A.45) combine to give

log
σ
 λ

λ6
du −

 z1
λ1

du −
 z2
λ3

du

σ
 a

λ6
du −

 b1
λ1

du −
 b2
λ3

du


σ
 λ

λ6
du −

 b1
λ1

du −
 b2
λ3

du

σ
 a

λ6
du −

 z1
λ1

du −
 z2
λ3

du


=

 z1

b1

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz +

 z2

b2

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz

+

 z1

b1
du1 +

 z2

b2
du1

 λ

a
dr1

+

 z1

b1
du2 +

 z2

b2
du2

 λ

a
dr2. (A.46)

Lemma 32 and the discussion following Eq. (A.43) shows that in
Eq. (A.46), for u′, u′′

∉ Θ , we can write

u′
=

 z1

λ1

du +

 z2

λ3

du, u′′
=

 b1

λ1

du +

 b2

λ3

du,

consider z1 and z2 as functions of u′ and b1 and b2 as functions of
u′′. Thus Eq. (A.46) becomes,

log
σ
 λ

λ6
du − u′


σ
 a

λ6
du − u′′


σ
 λ

λ6
du − u′′


σ
 a

λ6
du − u′


=

 z1

b1

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz +

 z2

b2

 λ

a

∂

∂λ

s + w

z − λ

dλ
2s

dz

+

u′

1 − u′′

1

  λ

a
dr1 +


u′

2 − u′′

2

  λ

a
dr2. (A.47)

Differentiation of Eq. (A.47)with respect to u′

i for i = 1, 2, produces

− ζi

 λ

λ6

du − u′


+ ζi

 a

λ6

du − u′


=
∂z1
∂u′

i

 λ

a

∂

∂λ

s1 + w

z1 − λ

dλ
2s1

+
∂z2
∂u′

i

 λ

a

∂

∂λ

s2 + w

z2 − λ

dλ
2s2

+

 λ

a
dri, (A.48)

where the functions ζi and ℘ij for i, j = 1, 2, are defined by

ζi(u) =
∂

∂ui
log σ(u), ℘ij = −

∂2

∂ui∂uj
log σ(u). (A.49)

Eq. (A.41) shows that, for i, j = 1, 2, andΩm an integer translation
across the period lattice of the Jacobi variety of K2,

ζi(u +Ωm)− ζi(u) = (Hm)i = 2ηi1m1 + 2ηi2m2

+ 2η′

i1m
′

1 + 2η′

i2m
′

2 (A.50)

and

℘ij(u +Ωm) = ℘ij(u). (A.51)

Using

u1 =

 z1

λ1

dz
s

+

 z2

λ3

dz
s
,

u2 =

 z1

λ1

zdz
s

+

 z2

λ3

zdz
s
,

(A.52)

we find that
∂z1
∂u1

=
s1z2

z2 − z1
,
∂z2
∂u1

=
s2z1

z1 − z2
,

∂z1
∂u2

=
s1

z1 − z2
,
∂z2
∂u2

=
s2

z2 − z1
.

(A.53)
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In Eq. (A.48) we now make the change of replacing the points
(z1, s1), (z2, s2) ∈ K2 with their corresponding points under the
hyperelliptic involution, viz., (z1,−s1) and (z2,−s2). Notice that
u′
r is changed by this transformation to

− u′

r + 2ωi1m1 + 2ωi2m2 + 2ω′

i1m
′

1 + 2ω′

i2m
′

2 (A.54)
for some integers m1,m2,m′

1,m
′

2. Making the corresponding
change in the right-hand side of Eq. (A.48) and using Eq. (A.53),
we obtain, for i = 1, 2, λ

a
dri + ζi

 λ

λ6

du + u′


−

1
2
fi(λ, z1, z2)

= ζi

 a

λ6

du + u′


−

1
2
fi(a, z1, z2), (A.55)

where

f1(λ, z1, z2) =
w(λ− z1 − z2)
(z1 − λ)(z2 − λ)

+
s1(z1 − λ− z2)
(z1 − λ)(z1 − z2)

+
s2(z2 − λ− z1)
(z2 − λ)(z2 − z1)

,

f2(λ, z1, z2) =
w

(z1 − λ)(z2 − λ)
+

s1
(z1 − λ)(z1 − z2)

+
s2

(z2 − λ)(z2 − z1)
.

(A.56)

By adding
 z1
λ1

dri +
 z2
λ3

dri to both sides of Eq. (A.55), we obtain λ

a
dri +

 z1

λ1

dri +
 z2

λ3

dri

+ ζi

 λ

λ6

du + u′


−

1
2
fi(λ, z1, z2)

=

 z1

λ1

dri +
 z2

λ3

dri + ζi

 a

λ6

du + u′


−

1
2
fi(a, z1, z2), (A.57)

in which the left-hand side is symmetric with respect to λ, z1, z2,
and the right-hand side is the value of the left-hand side when
λ = a. Consequently the left-hand side of Eq. (A.57) is independent
of λ, z1, and z2. Therefore, for i = 1, 2,

ζi

 λ

λ6

du + u′


= Ci +

1
2
fi(λ, z1, z2)−

 λ

a
dri

−

 z1

λ1

dri −
 z2

λ3

dri, (A.58)

where Ci is independent of λ, z1, z2. Since a is an arbitrary point on
K2, it can be set equal to the branch point at a = λ6, giving

ζi

 λ

λ6

du + u′


= Ci +

1
2
fi(λ, z1, z2)−

 λ

λ6

dri

−

 z1

λ1

dri −
 z2

λ3

dri. (A.59)

Now ζi(0) = 0, being an odd function, so setting λ = λ6, z1 = λ1,
and z2 = λ3, shows that Ci = 0, for i = 1, 2.

Direct calculation shows that, as λ → ∞
±, the singularities in

the terms on the right-hand side of Eq. (A.59) cancel out, so that

lim
λ→∞±

1
2
fi(λ, z1, z2)−

 λ

λ6

dri = γ±

i , (A.60)

where

γ±

1 = ±
1
2


−z1z2 −

1
8
Λ2

1 +
1
2
Λ2


+

1
2
s1 − s2
z1 − z2

+ δ±

1 ,

γ±

2 = ±
1
2


z1 + z2 −

1
2
Λ1


+ δ±

2 ,

(A.61)

and δ±

1 and δ±

2 are constants independent of z1 and z2. Thus
Eq. (A.59) becomes

ζi


∞

±

λ6

du + u′


= γ±

i −

 z1

λ1

dri −
 z2

λ3

dri. (A.62)

Eq. (A.62), implies, for i = 1, 2,

ζi


u′

+


∞

+

λ6

du


− ζi


u′

+


∞

−

λ6

du


= γ+

i − γ−

i . (A.63)

Substituting the explicit expressions for γ±

i , we obtain the solution
to the Jacobi inversion problem,

ζ1


u′

+


∞

+

λ6

du


− ζ1


u′

+


∞

−

λ6

du



= −z1z2 −
1
8
Λ2

1 +
1
2
Λ2 + δ1,

ζ2


u′

+


∞

+

λ6

du


− ζ2


u′

+


∞

−

λ6

du



= z1 + z2 −
1
2
Λ1 + δ2,

(A.64)

where the constants δ1 and δ2 are independent of z1 and z2, and
so can be obtained from Eq. (A.64) by setting z1 = (λ1, 0) and
z2 = (λ2, 0) = (λ∗

1, 0). Recall αij for i, j = 1, 2, is given by

α =
1
2
ηω−1

=


α11 α12
α21 α22


. (A.65)

Hence

δ1 = δ+

1 − δ−

1 = −


−|λ1|

2
−

1
8
Λ2

1 +
1
2
Λ2


+ ζ1


∞

+

λ6

du +

 λ2

λ3

du



− ζ1


∞

−

λ6

du +

 λ2

λ3

du



= −


−|λ1|

2
−

1
8
Λ2

1 +
1
2
Λ2


+ 2α11


∞

+

∞−

du1

+ (α12 + α21)


∞

+

∞−

du2 +
1
2
(ω−1)11

×


θ+

1

θ+
−
θ−

1

θ−


+

1
2
(ω−1)21


θ+

2

θ+
−
θ−

2

θ−


,

δ2 = δ+

2 − δ−

2 = −


λ1 + λ∗

1 −
1
2
Λ1


+ ζ2


∞

+

λ6

du +

 λ2

λ3


− ζ2


∞

−

λ6

du +

 λ2

λ3

du



= −


λ1 + λ∗

1 −
1
2
Λ1


+ (α12 + α21)


∞

+

∞−

du1

+ 2α22


∞

+

∞−

du2 +
1
2
(ω−1)12


θ+

1

θ+
−
θ−

1

θ−


+

1
2
(ω−1)22


θ+

2

θ+
−
θ−

2

θ−


,

(A.66)
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where

θ+
= θ


1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du


,

θ−
= θ


1
2
ω−1


∞

−

λ6

du +

 λ2

λ3

du


,

θ+

1 = θ1


1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du


,

θ−

1 = θ1


1
2
ω−1


∞

−

λ6

du +

 λ2

λ3

du


,

θ+

2 = θ2


1
2
ω−1


∞

+

λ6

du +

 λ2

λ3

du


,

θ−

2 = θ2


1
2
ω−1


∞

−

λ6

du +

 λ2

λ3

du


.

(A.67)

Explicit expressions for z1 and z2 can then be found from the
quadratic formula for the roots of the quadratic equation

z2 − (z1 + z2)z + z1z2 = 0. (A.68)

The corresponding values [28] of s1 and s2 for (z1, s1), (z2, s2) ∈ K2
are, for k = 1, 2,

sk =


℘22


u′

+


∞

−

λ6

du


− ℘22


u′

+


∞

+

λ6

du


zk

+℘12


u′

+


∞

−

λ6

du


− ℘12


u′

+


∞

+

λ6

du


. (A.69)
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