
Cedarville University Cedarville University

DigitalCommons@Cedarville DigitalCommons@Cedarville

Scholars Symposium The 2023 Symposium

ACCIDENT with CodeQL ACCIDENT with CodeQL

Benjamin Smid
Cedarville University, bsmid@cedarville.edu

Nathan Johnson
Cedarville University, nathanjohnson@cedarville.edu

Christopher Bellanti
Cedarville University, cbellanti@cedarville.edu

Caleb Collins
Cedarville University, cmcollins@cedarville.edu

Follow this and additional works at: https://digitalcommons.cedarville.edu/rs_symposium

Smid, Benjamin; Johnson, Nathan; Bellanti, Christopher; and Collins, Caleb, "ACCIDENT with CodeQL"
(2023). Scholars Symposium. 8.
https://digitalcommons.cedarville.edu/rs_symposium/2023/poster_presentations/8

This Poster is brought to you for free and open access by
DigitalCommons@Cedarville, a service of the Centennial
Library. It has been accepted for inclusion in Scholars
Symposium by an authorized administrator of
DigitalCommons@Cedarville. For more information,
please contact digitalcommons@cedarville.edu.

http://www.cedarville.edu/
http://www.cedarville.edu/
https://digitalcommons.cedarville.edu/
https://digitalcommons.cedarville.edu/rs_symposium
https://digitalcommons.cedarville.edu/rs_symposium/2023
https://digitalcommons.cedarville.edu/rs_symposium?utm_source=digitalcommons.cedarville.edu%2Frs_symposium%2F2023%2Fposter_presentations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.cedarville.edu/rs_symposium/2023/poster_presentations/8?utm_source=digitalcommons.cedarville.edu%2Frs_symposium%2F2023%2Fposter_presentations%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx
http://www.cedarville.edu/Academics/Library.aspx

Abstract
Cryptography is an important tool in the security of our software

systems. However, mistakes are often made by developers who do not
implement cryptography correctly in their projects. As JavaScript becomes
more popular as a language for full-stack development, vulnerabilities in
JavaScript due to misuses of the cryptographic APIs and incorrect practices
have increased as well. Our project focuses on the use of GitHub’s default
code scanning tool, CodeQL. We are contributing to GitHub’s CodeQL
repository with improvements that broaden the scope of vulnerabilities that
its queries detect. Since CodeQL is widely used by developers and companies
who use GitHub to host their projects, our contributions will have an
immediate and direct impact on a large community of programmers and help
them find cryptographic errors in their code bases.

ACCIDENT
Automated Cryptographic Misuse Detection

in JavaScript Code

Faculty Advisor: Dr. Seth Hamman

Students: Chris Bellanti, Caleb Collins, Nate Johnson, Ben Smid

Sponsor: – Dr. Mike Clark, Quinn Hirt

Code Analysis
Code analysis is the process of examining

source code to identify potential issues and
vulnerabilities, helping catch errors early in
the development process and improving
code quality.

Static / Dynamic Analysis
Static code analysis examines source

code for issues without running it. Dynamic
analysis looks at code behavior during
execution and observes its interactions with
other system components and the outcomes
it produces.

CodeQL
CodeQL is a declarative, object-oriented

query language used to find vulnerabilities
in code. It is part of the GitHub security
suite and allows developers to write
custom queries to analyze code and find
potential issues.

Our Work
Password Hashing Algorithms – Improved
coverage for detecting passwords hashed and
stored with insufficient computational effort
using the CryptoJS library.
Certificate Chain Validation – Added checks
for disabled certificate chain validation.
Unsafe Block Cipher Mode – Improved
granularity of checks to account for unsafe
block cipher modes like ECB.

Password Hashing Algorithms – Continuing
to improve coverage for other libraries.
Insecure HTTP Parse – Writing new query to
detect use of unsafe HTTP parser.

Snapshot
Database

Query

Libraries

Source
Code

Compiled Query

Query Results

Query compilation
translates CodeQL
queries into a
format that can be
executed efficiently
by the query engine.

Query execution involves
executing the compiled
queries against the database
and returning variables that
meet conditions specified in
the queries.

CodeQL
Workflow

Database creation calls for CodeQL to turn the provided
source files into a database containing queryable, object-
oriented data, including ASTs, DFGs, and CFGs.

QL Compiler

Result interpretation
highlights errors in the
source code and gives
explanations and suggestions.

Evaluator

CodeQL Snippet

Extractor

	ACCIDENT with CodeQL
	

	Slide Number 1

