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A Simulated MANO Machine -- A Novel Project for Undergraduate
Computer Architecture Class

Abstract:

Hands-on experience and visualization are both crucial to enhance undergraduate engineering
education. This paper will describe a novel project that we feel meets both of these key elements
for a first undergraduate computer architecture class. Instruction level simulation, though helpful,
does not expose students to the hardware behavior or the internal instruction behavior. Likewise,
FPGA simulation alone will not provide a good real-time visualization of the many digital
signals which make up the microprocessor hardware. To avoid such drawbacks, we designed a
project that requires each student to implement a 16-bit general-purpose computer on a real time
digital logic simulator named Cedarlogic.

Students are given an instruction set specified in the textbook and a short assembly level test
program. Students will: 1) build the entire computer hardware using the Cedarlogic simulator
from fundamental logic gates; 2) write an assembler to translate the test program into binary
code; 3) load the program into the memory of their computers; and 4) run the test program on
their hardware. Cedarlogic is a unique real-time digital logic simulator designed by six of our
senior engineering and computer science students for their capstone project over two successive
years. In Cedarlogic, a logic high signal is shown in red, a logic low signal is shown in black,
while high impedance is shown in green. As a result, when a project is working correctly
students can actually watch all the internal signals within the computer “dancing” with the clock.
Students can watch how the address buses change, how the data is latched, and how the ALU
calculates... It is a real-time simulation, an experience which uncovers the mysterious veil of the
computer. The students are excited to watch their computer executing the test program, clock
cycle by clock cycle. It is truly an enlightening experience for the undergraduate computer
architecture student.

Introduction

Computer Architecture is a fundamental course in every computer engineering curriculum. Two
important goals of the computer architecture class are to give the students a good understanding
of:

1. how digital hardware is used in the construction of a computer, and;

2. how each instruction propagates through the microprocessor.
These goals are especially important for the first exposure of the undergraduate student to
computer architecture. Without a good understanding of these basics, all the student will receive
will be some vague terminologies and theories. As a result, it will be hard for them to further
develop and to receive advanced topics in computer architecture and apply them to the real
world.

To fulfill the above goals, many schools have developed projects to give their students hands on
practice in these areas. These projects have a variety of forms. One approach is to use computer
instruction simulators. For instance, the SPIM simulator will read and execute assembly
language programs written for MIPS machines; the emu86 will run x86 instructions. Projects
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developed by using these kinds of simulators will expose the student to the instruction level of
the computer architecture. The student is able to watch data moving among registers and
memory in the instruction cycle level within the simulated windows. The drawback is that the
student is not exposed to the hardware behavior and inner-instruction operations.

Another recent approach is to implement a simple processor on a FPGA board. The student can
design digital logic blocks and put them together to form a small microprocessor. The
implemented microprocessor can be burned and tested onto an FPGA board. Indiana University,
for example, requires students to implement a simple RISC processor on a XSA-100 FPGA
board [1]. Texas A&M University also adopted the FPGA implementation in their
microprocessor class to let the students experience the design process [2]. Although it is
advantageous to get students involved with computer hardware design, there are some limitations
to this kind of project. First, it requires students who are taking computer architecture to be
proficient in VHDL or Verilog, which is the language commonly used in programming an FPGA
board. Second, with the FPGA board, only signals that are mapped to the I/O pins can be
observed on an oscilloscope or logic analyzer. Most FPGA boards also provide the ability to
display information on a VGA Monitor. The problem is that even in a very simple RISC
microprocessor there are many signals and buses. With a limited screen size on the scope or
computer monitor, it is hard to observe the various signals simultaneously. Finally, since the
student cannot observe very many signals at once, it is harder to debug their designs. As a result,
FPGA implementation can give the student a good hands-on experience on the hardware and
machine cycle level simulation, but it does not provide good visualization of the signals, buses
and hardware elements, and visualization is very helpful for the student.

The authors of this paper have developed a novel project that fulfills both the need for hands on
experience and visualization by using the Cedarlogic simulator [3]. We have received very
positive feedback from the students who have completed this project and believe that it has
tremendous educational value.

Course Overview

The Computer Architecture course at Cedarville University is a junior level offering with
prerequisites of Digital Logic Design and Microprocessors. Since this represents a student’s first
computer architecture class, the primary goal is to give her a solid foundation in the basics. The
student will then be well prepared for the Advanced Computer Architecture class that is offered
in their senior year.

The textbook for computer architecture is “Computer System Architecture,” by M. Morris Mano
(Prentice Hall) [4].

Project Background

The first four chapters of the textbook introduce digital logic circuits that are commonly used in
computer organizations. These chapters give the student the desire to know how to connect all
the isolated digital pieces and make them function together.

Chapter five of the textbook leads the student through the entire design process of a small
computer system, which includes instruction set selection, instruction format design, data path
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design, instruction cycle analysis and control signals derivation. Our project is to actually
implement this small computer system on the Cedarlogic digital logic simulator.

System Specification

The computer to be implemented is a 16-bit wide general-purpose computer. The system
specifications are shown in Figure 1 below:

11 0

PC
11 0
AR
Memory
4096 words
15 0 16 bits per word
IR
15 0 15 0
TR DR
7 0 @ 0 15 0
OUTR INPR AC

Figure 1. Mano Machine System Specifications with Width Marked

A 4k by 16 bits wide memory space will require a 12-bit wide address bus. This explains why
the PC (program counter) register and AR (address register) are 12 bits wide. 16 bit wide
registers are used for DR (data register), TR (temporary register), AC (Accumulator) and IR
(instruction register). 8 bit wide registers are used for I/O operations (OUTR and INPR). A
common bus will be used to connect them together as shown in Figure 2.
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Figure 2. Data Path of Mano Machine
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The instruction format is defined in Figure 3.

15 14 12 11 0

I Opcode Address (Opcode = 000 through 110)

(a) Memory — reference instruction

15 12 11 0

0 1 1 1 Register operation (Opcode =111, I=0)

(b) Register — reference instruction

15 12 11 0

1 1 1 1 1/0 operation (Opcode =111, I=1)

(¢) Input — output instruction

Figure 3. Mano Machine Instruction Set Format.

Bit 12-14 are used to indicate if the instruction is a memory reference instruction or not. If bit
12-14 are 111, the instruction is either a register-reference instruction or I/O instruction. Bit 15 is
used to further distinguish each one. If bit 12-14 are not 111, the instruction is a memory-
reference instruction. Bit 15 is used to indicate indirect or direct addressing mode for memory
reference instructions. A decoder will be used to further decode which type of instruction it is.

Table 1 lists the entire instruction set that is to be implemented. The binary code of each
instruction complying with the instruction format defined in Figure 3 is also listed.

A complete list of micro-operations and timings for the interrupt cycle and all the instructions of
the Mano machine are developed as shown in Table 2.
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Table 1: Mano Machine Instruction Set

Hexadecimal code

Symbol I=0 1I=1 Description

AND Oxxx 8xxx AND memory word to AC
ADD Ixxx Oxxx Add memory word to AC
LDA 2xxx Axxx  Load memory word to AC

STA 3xxx Bxxx  Store content of AC in memory
BUN 4xxx Cxxx  Branch unconditionally

BSA 5xxx Dxxx  Branch and save return address
ISZ 6xxX Exxx  Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off
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Table 2: Computer Micro-Operations and Controls for the Mano Machine.

Fetch R'T: AR<PC
R'T: IR<M[AR], PC«PC+1
Decode R'Ty: D, ..., Dy<Decode IR(12-14),
AR «IR(0-11), I<IR(15)
Indirect DT AR <—M[AR]
Interrupt:

T THIENYFGI + FGO): R<«1
RTy, AR<0, TR«PC
RT:: M[AR]< TR, PC<0
RT5: PC+—PC+1, IEN<0, R<0, SC<0
Memory-reference:

AND DoT.:. DR« M[AR]
DoTs: AC<«AC/ADR, SC<0
ADD DT, DR < M[AR]
DiTss AC<—AC + DR, E<+Cu, SC<0
LDA D.T.. DR« M[AR]
D,Ts: AC« DR, SC<0
STA D, T: M[AR]«AC, SC+0
BUN D.Ty: PC<« AR, SC<0
BSA DT M[AR]«PC, AR+AR +1
DTs: PC«AR, SC<+0
ISZ DiT:: DR <MI[AR]

DT DR<DR+1

DTy  M[AR]«<DR, if(DR =0)then(PC+PC +1), SC<«0
Register-reference: ] ) .

D,I'Ts = r (common to all register-reference instructions)

IR =B:(1=0,1,2, ..., 11)

. SC<0
CLA rBy:  AC<«0
CLE By E<0
CMA rBy:  AC<AC
CME rBg:. E<E
CIR rBr.  AC<—shr AC, AC(15)«<E, E<AC(0)
CIL rBe: AC<shl AC, AC(0)«<E, E< AC(15)
INC rBs: AC«<AC+1
SPA B If (AC(5) = 0) then (PC«PC + 1)
SNA rBy:  If (AC(15) = 1) then (PC«<PC + 1)
SZA By If (AC = 0) then PC—PC + 1)
SZE rBy:  If (E = 0) then (PC«PC + 1)
HLT rBe: S0

Input-cutput: ) ) _
D4IT; = p (common to all input—output instructions)
IR =B:({=6,7,8,9,10,11)

p: SC<0
INP pBy:  AC(0-T)«<INPR, FGI<0
ouT pBi:  OUTR «AC(0-7), FGO <0
SKI pBs:  If (FGI = 1) then (PC<PC + 1)
SKO pBs:  If (FGO = 1) then (PC«PC + 1)
ION pBn  IEN <1
IOF pBs  IEN <0

In Table 2, R is the interrupt flip flop, 7, is the output from the sequence counter at different

cycles. D, is the output of the decoder which decodes the instruction function. IR(7) and B; refer
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to the ith bit in the instruction register IR. Table 2 summarize how long each instruction takes,
and what micro-operations are to be done in each clock cycle. It is not difficult to derive the
control signals for the mano machine. Notice the following example:

To derive the load control signal of Data Register DR, we scan the whole table and identify all
the places that have DR« (indicating DR is the recipient of a load operation). We find that DR

will load data when D, -T,is true, or D, T, is true, or D,"T,is true, or D T, is true. Thus, the

control signal of load DR is D,-T,+D,-T,+D, T,+Dy-T,. The control signal logic expressions
can be derived by using the same method.

Project Assignment

The project requires that each student in the class implement this Mano Machine in Cedarlogic.
To test the machine, a small assembly language program is used as shown in Table 3.

Another significant part of this project involves students writing an assembler for the Mano
machine using their favorite high level programming language, usually C++ or Java. The
assembler software accepts as input a text file of an assembly language program. It must then
parse each line of text, and translate it into the corresponding machine code. The translated
binary codes along with their memory addresses are output to a newly generated .txt file that will
be loaded into the memory inside the Cedarlogic simulator. This requirement helps students
come to a better understanding of the three levels of program representation since they will need
to code with a high level language, as well as manipulate assembly language and binary code.
The students also realize the importance of the instruction set architecture.

Once the binary code is ready, it is then loaded into the 4096x16 simulated memory chip in the
simulated computer system and run (Cedarlogic provides a simulated memory chip which can be
written by loading text format files). A successful computer will compute the right sum “023FH”
in both the accumulator and the memory when the program halts the machine.
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Table 3: Test Program for Basic Computer

Address | Contents /This programs Adds 10 numbers
0000 4100 /jump to 100H where the test program stores
ORG 100
0100 210B LDA ADS /Load first address of operands
0101 310C STA PTR /Store in Pointer
0102 210D LDA NBR /Load minus 10
0103 310E STA CTR /store in counter
0104 7800 CLA /Clear Accumulator
0105 910C LOP, ADD PTR 1 /Add an operand to AC Indirect
0106 610C ISZPTR /Increment Pointer
0107 610E ISZ CTR /Increment Counter
0108 4105 BUN LOP /Repeat Loop again
0109 310F STA SUM /Store Sum
010A 7001 HLT /Halt
010B 0150 ADS, HEX 150
010C 0000 PTR, HEX 0
010D FFF6 NBR, DEC -10
010E 0000 CTR, HEX 0
010F 0000 SUM, HEX 0
ORG 150
0150 0019 DEC 25 /first # to add at address 150
0151 0032 DEC 50
0152 004B DEC 75
0153 0064 DEC 100
0154 0019 DEC 25
0155 0032 DEC 50
0156 004B DEC 75
0157 0064 DEC 100
0158 0019 DEC 25
0159 0032 DEC 50 /10th # to add at address 159
END /end of program The sum should be 57510 = 23F16

Cedarlogic Simulator

This project could not be undertaken without the Cedarlogic simulator. Cedarlogic is a windows-
based digital logic simulator. It was the result of a senior design project of the computer science
and engineering department of Cedarville University [5]. Cedarlogic functions in a similar way
to the Diglog simulator [6], but it is Windows-based and provides a much better graphical user

interface. Figure 4 shows a screen shot of a simple circuit within Cedarlogic:
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Note the left hand menu that provides all the basic digital gates, clock, input dip switches, output
LED’s, keypad, and memory chips. In addition, the student can actually see the signals switching
between high and low during this real-time simulation. Red indicates high, black indicates low,
and green indicates high impedance. Besides an adjustable clock, registers and memory chips are
also provided in Cedarlogic. They are shown in Figure 5.

B CEDAR Logic Simulator
File Edit Wiew Help

fEEH & A MED @0 N T [ 8 @
1 - Basic Gates Page 1 | Page 2 '.F'age 3| Page 4 | Page5 | Page 6| Page 7 | .Page 8| Page 3 || Page 1EI.§

2 - Invert & Connect

I 3 - IHEUt and Outiut

5 - MUY and Decoder
& - Add & Compare I |
7 - Flip Flops LEL 7 LCu mp =
g - Registers y LCU e B _“
o - RAM and ROM = ko 7] [T =|
10 - Chips b £ — — = <
il 20 T [T — =
-+ = - i = RAM E
Toxt 1 000 ¢ 1 0000 - = i
- - 3 IEEEEES |
0 A p 0= il IN
g o o
7] N R I8 15 1]
12 bit register Tmi TTTTTTTTTTITTITT]
16 bit register 4096X16 memory
ol 1111 1111

X ¥
—mo -
— FR
— ﬂ_ J_E_ ]

&)
fip flpos adjustable clock

buffer 4 bit adder

L
FL

e
3
=

Figure 5. Digital Components Provided by Cedarlogic to Carry Out the Project.
Registers are available in 4, 8, 12, and16 bits wide. They can perform the functions of count (up
or down), parallel load reset and hold. A memory chip can be loaded in the form of a txt file. If
the student double clicks on a memory chip, a window will pop up requesting the input of a txt
file. It has both write and read controls along with the synchronizing clock. Figure 5 shows some
other basic digital components that are necessary to carry out the project, such as buffers, adders,
and flip flops.
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Project Implementation
Data path

The first step of this project is to require the student to complete the data path architecture in
CedarLogic found in Figure 2, except arithmetic and logic operation units. A memory chip,

registers and buffers are used. Figure 6 is one of the implementations of the data path with an
accumulator.

From Figure 6, it can be seen that all the required registers are connected according to Figure 2.
All the control signals for memory, buffers and registers are named properly. When the machine
is reset, it will be noted that all the registers are cleared to zero.
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Arithmetic and Logic Unit

In order to keep the circuit easy to see and manage the arithmetic and logic operation units are
implemented on a different page. Cedarlogic supports up to 10 pages. As long as they are named
correctly, signals from different pages can interact with each other just like a single page
simulation. The ALU can be implemented using a bit slice technique, which means a single bit of
ALU is implemented and then 15 more copies can be made to form a 16 bit wide ALU with
slight modifications. Figure 7 shows one of the implementations. On this page, the majority of
the hardware is composed of 16 pieces that are almost identical. Figure 8 shows a closeup view
of one bit of the ALU. In this example, a four-bit built-in adder in the Cedarlogic simulator is
used as shown in Figure 9.
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Figure 8. A Close-Up of a Single Bit of the ALU.
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Figure 9. Four 4-bit Adders Used to Create the 16 Bits Addition Function Unit
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As explained earlier, control signals can be derived from Table 2. Before implementing the
control unit in Cedarlogic, students are asked to scan Table 2 to derive the Boolean expressions
of all the control and timing signals on the registers, memory, bus buffers, instruction decoder,
ALU, sequence counter, flip flops, etc. Once all the boolean expressions are ready, it is easy to
convert them into a digital logic circuit. For instance, scan Table 2 about AR register, it can be
summarize that: AR will be loaded only when the following conditions is true:

1. at TO and not in the interrupt cycle (/R is true)

2. atT2 and /R is true

3. at T3 and indirect addressing mode (I=1) and it is memory reference instruction (D7=0)
The boolean expression confine IdAR control signal will be

IdAR=TO0./R+T2./R+T3.1./D7

As a result, the control hardware of the IdAR is shown in Figure 10.

Address Register Control
ey

-janassg "
T2 IdAR

D7 >——{ >0
B mmmmn
T3 =TI

Figure 10. Control Signal Implementation Example — Load AR Control Signal.

Figure 11 shows the control unit with instruction decoder, sequence counter and all the control
circuits related to memory, registers, buses, and resets. The entire control signal generated from

the control unit will be propagated to the data path shown in Figure 6 to control the data flow and
timing.
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A Working Mano Machine Demonstration

A working Mano machine will clearly demonstrate that, at a specific machine cycle, certain
control signals are active depending on which instruction is propagating in the microprocessor. It
will also show the data transfer among registers and memory and switching on the buses.

Figure 12 shows one moment of the execution of the test program running on the Mano
Machine. From this snap shot, it can be seen that the read control signal on the memory chip is
active, the address buses are all black, the data bus shows red on bit 14 and bit 8. This indicates
that memory at address O000H is reading out; the content in that memory location is 4100H,
which is a jump to 100H instruction. Meanwhile, the load control signal of the instruction
register is also active, waiting for the clock to arrive. Once the rising edge of the clock arrives,
this instruction will be latched into the instruction register as shown in Figure 12-2. The content
of IR now has been modified to 4100H after the clock ticks one time.
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A working Mano Machine implementation will allow the students to visualize every step of
computer’s operation of the test program running T state by T state. If the student makes an
error in his hardware design it is relatively easy to catch and correct it since all signals are easily
observed. For instance, since during state T1 the instruction fetch is to occur, the student would
expect to see a high on the memory read and a high on the IR load, the sequence counter should
be at 1. If one or more of those control signals does not function correctly, it will be easy to
identify it. The students can single clock the machine if necessary.

Figures 13 and Figure 14 show the successful result of the test program
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With an appropriate clock rate, students will see a “live” computer dancing under the control of
the “program’s” commands. They begin to really see through to the inside of how the computer
signals are generated, how the data are transferred between registers and the memory and how
each instruction propagates through the digital circuitry. When the students get their machines to
work they are usually very excited and really seem to better understand how a CPU works.

Outcomes

In class evaluations many students have written very positive comments about how much they
enjoyed this project and how helpful it was to their understanding of computer architectures.

The first midterm exam covers the concepts of computer basics. Prior to implementing this
project in Cedarlogic, the average of the first midterm exam was 88%. After utilizing Cedarlogic
with this project in spring 2007, the average of the first test increased to 91%. Also the overall
rating on the course evaluations is improved from the middle 40-50% to the higher 20% rating.

This project extends the textbook and gives the students the opportunities to enhance their
knowledge by actually implementing and visualizing the mano machine they designed. This
project helps the students confirm the content they learned in class and consolidate their
knowledge.

*Cedarlogic can be freely downloaded from the site: http://sourceforge.net/projects/Cedarlogic.
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