Apr 12th, 11:00 AM - 2:00 PM

E,E-farnesol Inhibits Swarming Motility in *Burkholderia cepacia* Through Rhamnolipid Production

Stephanie E. Nicholls
Cedarville University, snicholls@cedarville.edu

Alayna N. Sanderson
Cedarville University, alaynasanderson@cedarville.edu

Andrea P. Schwartz
Cedarville University, aschwartz@cedarville.edu

Lauren E. Ward
Cedarville University, laureneward@cedarville.edu

Jessica N. Weisensee
Cedarville University, jweisensee@cedarville.edu

Follow this and additional works at: http://digitalcommons.cedarville.edu/research_scholarship_symposium

See next page for additional authors.

Part of the Bacteriology Commons, Biological Factors Commons, Laboratory and Basic Science Research Commons, Other Chemicals and Drugs Commons, Other Immunology and Infectious Disease Commons, and the Pathogenic Microbiology Commons.

Presenters
Stephanie E. Nicholls, Alayna N. Sanderson, Andrea P. Schwartz, Lauren E. Ward, Jessica N. Weisensee, Molly Yandrofski, and Tracy L. Collins
E,E-farnesol Inhibits Swarming Motility in *Burkholderia cepacia* Through Rhamnolipid Production

Burkholderia cepacia and *Candida albicans* both exhibit cell-to-cell communication through the use of quorum-sensing molecules (QSM) known as autoinducers. *E,E*-farnesol is a QSM produced by *C. albicans* which regulates its conversion from yeast to mycelium. Because there is a positive correlation between the presence of *B. cepacia* and *C. albicans* in the lungs of individuals with cystic fibrosis (CF), we examined whether *E,E*-farnesol had an effect on swarming motility in *B. cepacia*. Swarming motility was inhibited when *B. cepacia* was exposed to 250 µM of *E,E*-farnesol. In addition, there was a 26.8% decrease in rhamnolipid production when cells were grown in the presence of *E,E*-farnesol. These biosurfactants are known to regulate swarming motility. Changes in the rhamnoplipid concentrations could account for the inhibition of swarming motility observed in the presence of *E,E*-farnesol. The effect of *E,E*-farnesol on *B. cepacia* biofilms was also examined because these complex-community structures are detrimental to the lungs of CF patients and are quorum-sensing regulated. Crystal violet staining showed that *E,E*-farnesol did not significantly affect biofilm formation in *B. cepacia*. Further studies are needed to determine the effects of *E,E*-farnesol on established *B. cepacia* biofilms and whether it can be combined with traditional antibiotics to disrupt these structures.