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MOLECULAR BARAMINOLOGY OF MARINE AND FRESHWATER FISH

Matthew Cserhati, 1300 Hollydale Drive, Fullerton, CA 92831 matthew.cserhati@cui.edu
ABSTRACT

A pertinent question posed to the Creation/Flood model is how different fish species could adapt to the drastic changes in water
salinity that were inevitable due to the upheavals during the Flood that affected land animals as well as aquatic ones. Unifor-
mitarianism sees difficulties in this since it projects the stenohaline status of many fish species today into the past. However,
according to the Creation model, fish genomes may have been more robust and varied in the past, allowing for the euryhalinity
of many fish kinds during the Flood. Euryhaline fish species could have had a more varied genetic machinery that allowed them
to survive in saltwater or freshwater environments. Due to gene loss, this genetic machinery was then constricted, forcing fish
to adapt to one or another narrower level of water salinity.

Several factors influence adaptation to differing water salinities, the most important being the presence or absence of various
ion channels, including the sodium-potassium ATPase (NKA), Na"/K*/2CI" cotransporter 1 (NKCC1), cystic fibrosis trans-
membrane conductance regulator (CFTR), apical Na*/H" exchanger 3 (NHE3), and Na*/Cl- cotransporter (NCC). Other factors
include the presence of different predators, parasites, and pathogens, water temperature, pH, and oxygen content, lighting, and
even sexual factors. All these factors play a role, for example during the landlocking process, whereby fish species transition
from facultative migration patterns involving adaptation to varying salinities to obligatory adaptation to freshwater environ-
ments.

The mitogenomes of 655 fish species belonging to nine orders (Acipenseriformes, Anguilliformes, Beloniformes, Characi-
formes, Clupeiformes, Cyprodontiformes, Elasmobranchii, Pleuronectiformes, and Salmoniformes) were analyzed. Overall
mtDNA sequence similarity was determined to cluster these species into putative holobaramins. A total of 47 putative holo-
baramins were discovered. The distribution of saltwater, brackish water, and freshwater species was noted in all groups. A total
of 22 (46.9%) of all groups were found to be euryhaline, where a group was determined to be euryhaline if at least one of its
species was known to live in all three water environments. This indicates that some fish baramins are still euryhaline, in the
process of adapting to narrower levels of water salinity (either salt or freshwater).
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INTRODUCTION

After the Flood, the Earth had become a very different place for
organisms to inhabit. Entire biomes and ecosystems had changed
during the massive upheaval, and aquatic environments were defi-
nitely not an exception. The Flood was a violent geological process
that drastically changed the surface of the Earth, including its wa-
ter sources, such as oceans, lakes, and rivers. The erosion of the
different landmasses and volcanic activity would have drastically
increased the salt level of the post-Flood waters compared to the pre-
Flood waters. This means that fish would have had to rapidly adapt

On the other hand, hypoosmotic conditions tend to bloat cells, which
is also undesirable. How did freshwater and saltwater fish survive the
Flood? Is it even possible for fish to adapt rapidly between saltwater
and freshwater? What kind of biological mechanism makes this pro-
cess possible? What is the distribution of freshwater and saltwater
fish species in different fish baramins?

Several initial explanations present themselves. First, changes in sa-
linity may not have been that rapid for fish and other aquatic animals
to be able to survive. Experiments performed by Smith and Hagberg
(1983) on the blue damsel (4budefduf uniocellatus), a species of ma-

to changing water salinities.

Skeptics raise the question, how could aquatic organisms, such as
fish, survive such drastic changes in salinity? Elevated salt levels
disrupt the osmotic balance within cells and draw water out of them.

rine reef fish, tested the organisms’ capability of surviving at differ-
ent levels of salinity. Fast rates of dilution (15 0/00 salinity/hour)
resulted in the loss of the fish’s locomotion at 0.88 0/00 salinity,
where freshwater is defined as less than 0.5 0/00 of dissolved salts.

© Cedarville University International Conference on Creationism. The views expressed in this publication
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At slower rates of dilution (0.031 0/00 salinity/hour), however, the
fish stopped swimming at 20.3 0/00 salinity. McCairns and Bernat-
chez (2010) studied freshwater and marine sticklebacks and found
that freshwater populations can survive in saltwater conditions, al-
beit at lower survival rates. The reverse was also true with marine
populations in freshwater habitats.

Second, it is a well-known fact that saltwater and freshwater can
form layers on top of one another. The mixing of freshwater and
saltwater in places was not complete. Pockets of water of varying sa-
linity can exist next to one another. For example, MacGinitie (1939)
reported layers of freshwater persisting atop layers of saltwater for
several days. Fish with different salinity tolerance levels could have
survived the Flood in these layers of varying salinity (Oard 1984).

Lastly, aquatic organisms can tolerate varying levels of salinity, even
within the same species, genus, or family. Similarly, it could also be
possible that different species within the same kind (baramin) of fish
exhibit differing levels of tolerance towards adverse levels of salini-
ty. In other words, both freshwater and saltwater fish species could be
part of the same kind (Whitcomb and Morris 1961, p. 387).

Woodmorappe lists several examples of euryhaline organisms, name-
ly animals that can not only tolerate both saltwater and freshwater
but have been observed living in these environments. These include
the roofed turtle (Kachuga sp.), the diamondback terrapin (Malac-
lemys sp.), the American crocodile (Crocodylus acutus), the cichlid
fish Tilapia grahami, and the crab species Telphusa sp. (Woodm-
orappe 1996, p. 144). Adaptation to varying saltwater concentrations
is a trait that is not exclusive to fish alone.

This also implies that certain changes in gene regulation allow for
rapid physiological changes in response to a challenge in salinity in
fish. These changes can involve hundreds or even thousands of genes.
Similar regulatory changes in genes exist in microorganisms that al-
low them to adapt to adverse environmental factors. For example,
the green alga Chlamydomonas reinhardtii can accumulate carbon in
response to low CO, levels (Brueggeman et al. 2012) as well as form
multicellular clusters in the presence of predators (Cserhati 2019).
Although this is an example only from a species of algae, this could
possibly be true in the case of vertebrate animals, as seen in various
cases of sexual dimorphism that are due to genetic differences.

These pre-existing gene repertoires appear to constitute a divinely
engineered regulatory circuitry that may be activated during adapta-
tion to a water environment differing in salinity, such as a landlocked
environment (an environment that is permanently closed to influx of
external saltwater). These gene repertoires may have allowed for the
post-Flood adaptation of fish to new environments due to the reced-
ing Flood waters (Genesis 8:13—14).

These changes in the regulatory machinery would have allowed fish
not only to survive during the Flood but also to adapt to new environ-
ments that arose after the Flood, such as lakes, ponds, rivers, inland
seas, and estuaries. Landlocking is a process whereby diadromous
fish (species that migrate between saltwater and freshwater envi-
ronments during their lifetime) lose their capability of adapting to
saltwater and permanently end up in a landlocked lacustrine environ-
ment, and therefore cannot migrate back to a marine environment.
Species that migrate as adults from saltwater to freshwater to spawn,

after which juveniles swim back to the ocean are called anadromous
species. Conversely, species that migrate from freshwater to saltwa-
ter to spawn, after which juveniles migrate back to freshwater are
called catadromous species. Amphidromous fish migrate between
freshwater and saltwater for purposes other than spawning. Such
species are born in freshwater, then float out into the sea then return
to freshwater as adults to spawn (McDowall 2007). See Figure 1 for
the differences between these migratory lifestyles, along with several
examples of species that belong to these groups.

Actinopterygian (ray-finned) fish make up 96% of all fish species.
In this clade, there are 15,150 freshwater and 14,740 (roughly 50%—
50%) marine species, even though oceans make up 90-99% of the
Earth’s surface volume. When we look at non-fish species, Dawson
(2012) estimates that there are around 4,000 marine gastropods ver-
sus 30,000 freshwater ones and 40 marine hydrozoans versus 3,500
found in freshwater habitats. Clearly, due to greater species richness,
freshwater habitats are the scenes for rapid speciation, although
freshwater fish can also acclimatize to saltwater conditions.

Genesis 1:20 describes the waters as abounding with living crea-
tures, which would naturally include fish. As such, we can be sure
that fish had high numbers at Creation Week. As of February 2022,
the FishBase database has described 34,800 species of fish (Froese
and Pauly 2022). Fish are the most abundant and diverse group of
vertebrates (Magurran et al. 2011). As to whether the created diversi-
ty in a particular fish kind was low or high would classify it as a type
2b or type 3b Carter baramin (Carter 2021).

Within the same family of fish that inhabit both freshwater and salt-
water, the more closely related species differ in their level of salt
tolerance in many cases (Huyse et al. 2004). Carrete Vega and Wiens
(2012) claim that species from the clade Percomorpha repeatedly
invaded freshwater habitats, along with cichlids, percids, and peo-
ciliids in several minor and major radiations. Although only 4% of
extant actinopterygians are found in both freshwater and saltwater,
many freshwater species have direct sister species in marine habitats
(Seehausen and Wagner 2014), such as in the fish faunas of Iceland,
New Zealand, Madagascar and Australia (Lévéque et al. 2008). Fur-
thermore, freshwater sub-species may arise from the same marine
species several times, as in the case of the threespine stickleback
(Gasterosteus aculeatus) species complex (Jones et al. 2012).

In this paper, I shall examine the scientific literature to see what kinds
of biological factors influence the adaptation of fish to new environ-
ments, such as the landlocking process. These could include things
such as changes in water salinity, presence of pathogen or predator
species (Choi et al. 2013; Perry et al. 2022), changes in lifestyle, geo-
graphical location (mainland or island populations), epigenetic factors,
and sex-based differences (for example the disproportionate disper-
sal of one sex due to mating) (Hutchings and Gerber 2002). Further-
more, molecular baraminological analyses will be performed to verify
whether freshwater and saltwater species exist within the same kind.
This will be done by calculating the sequence similarity between the
mitochondrial genome sequences of various fish species within a se-
lected group. Then, clusters will be formed based on these sequence
similarities. Species membership of these putative baramins will be
checked against ecological annotation from FishBase to see the distri-
bution of species that live in freshwater, brackish water, and saltwater.
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Figure 1. Depiction of differences between anadromous, catadromous, and amphidromous lifestyles.

MATERIALS AND METHODS
A. Mitochondrial sequence data (MitoFish)

The mitogenomes of 3,118 fish species were downloaded on Sep-
tember 8, 2022, from the MitoFish database, version 3.75 (Sato et
al. 2018) at http://mitofish.aori.u-tokyo.ac.jp/download.html. The
mitogenomes of several sets of species were selected from this
dataset, and aligned with one another using the ClustalW software
(Thompson et al. 1994). Table 1 shows a list of the selected taxonom-
ic units as well as the number of species that have mitogenomes from
the MitoFish dataset. The selected taxa (containing 29-167 species
each) represent groups that are between the level of order and sub-
class, meaning that they are above the level generally accepted as the
boundary of the kind. Three lamprey species were used as the outlier
species in each analysis, Lampetra aepyptera, Lampetra appendix,
and Lampetra fluviatilis.

B. Ecological data (FishBase)

The FishBase database (Froese and Pauly 2022) was used to help in
determining the ecological status of a given fish species (freshwater,
brackish water, or saltwater). Data analysis on the ecological status
of a given fish species was done using the R package, ‘rfishbase’,
version 2.0, using the fb_tbl(“species”) command. R version 4.1.0
was used. Heatmaps were created using the “heatmap’ function, and
Silhouette plots with the ‘fviz_nbclust’ function. The sequence simi-
larity matrix was calculated using the ‘seqinr’ package.

Table 1. Number of genera and species with mitochondrial genomes from
the Mitofish database.

Taxonomic unit No. of genera | No. of species
Acipenseriformes 6 29
Anguilliformes 38 61
Beloniformes 12 32
Characiformes 38 54
Clupeiformes 47 96
Cyprinodontiformes 20 69
Elasmobranchii 84 167
Pleuronectiformes 45 72
Salmoniformes 11 75

C. Entropy calculation

Shannon entropy was used to calculate the variety of freshwater,
brackish water, and saltwater species in a given cluster. Entropy was
calculated using the following equation:
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S=- 23

i=F,B,sp’  log,p,
where F stands for freshwater, B for brackish water, and S for saltwa-
ter. The variable pi stands for the proportion of fish that fall into each
of the three categories. In order to get a normalized entropy value,
the entropy was divided by the maximum entropy value for three
categories, which is approximately 1.585, where p, = 1/3.

Supplementary files containing the results of the analysis of the
nine fish groups are available on Zenodo at https://zenodo.org/

record/7227028#.Y1C9zEzMLrc.
RESULTS AND DISCUSSION
A. Literature review

Adaptation to differing salinities is a process that entails large-scale
genetic and morphological changes. One example is landlocking
whereby diadromous fish lose their capability of migrating back to
the ocean and permanently end up in a lacustrine environment. This
may be accompanied by the loss of genes that allow the fish to adapt
to marine environments. During this process, the differential expres-
sion of a large repertoire of genes may take place. Due to the changes
in selective pressures and possible ensuing differential genetic regu-
lation and gene loss, the newly landlocked species are rendered less
capable of adapting to future changes in its new environment (Hunt
et al. 2011). The landlocking process is similar to how eyeless fish
lose genetic information associated with sight in caves. In the dark
recesses of aquatic caves, fish lose the need for organs involving
sight, and thereby lose the genes that are necessary for eyes.

Evolutionists assert that landlocking is evidence of natural selec-
tion producing new species, but this claim is rather problematic.
The mere fact that the number of freshwater fish species is the same
as marine species, despite the greater volume of inhabitable marine
water implies a much faster diversification rate in freshwater fishes
(Rabosky 2020). This also implies selection factors that lead to the
diversification of fish species during their adaptation to lacustrine
environments.

The landlocking process happens at a much faster rate than expect-
ed according to the evolutionary timescale. Palkovacs et al. (2008)
found, based on mtDNA and microsatellite analysis, that the alewife
(Alosa pseudoharengus) adapted to saltwater multiple times with-
in as little as 300, but up to 5,000 years (both within the biblical
timescale). Hendry et al. (2000) found, based on microsatellite data
and phenotypic variation, that two populations of sockeye salmon
(Oncorhynchus nerka) became reproductively isolated from one an-
other and inhabited a lacustrine and a river environment after only 13
generations. Besides fish, Lee and Bell (1999) list 18 marine species
that have adapted to freshwater environments over only the past 200
years.

This leaves little time and chance for many new genes to arise during
adaptation to lacustrine environments, as per the evolutionary mod-
els. This is all the more significant, since the ion composition of salt-
water is largely in the range of that of body fluids, and maintaining
this ion composition in freshwater has high energy costs (Lee and
Bell 1999). Adapting to freshwater demands quite a bit of adaptation
on the part of fish, since the cell would have to expel superfluous

water entering it. It would make more sense if the expression of a
wide range of already existing genes is either differentially expressed
or these genes undergo differential epigenetic regulation. These pro-
cesses have been found to occur fairly rapidly. The discovery of such
differentially expressed gene (DEG) repertoires is greatly facilitated
by RNA-seq technology, whereby dozens, or even hundreds of genes
can be identified that take part in the transition between saltwater and
freshwater.

Several factors can play a role during landlocking, and the adaptation
to different water salinities in general. These include salt concentra-
tion, temperature, dissolved oxygen levels, new pathogens, parasites
and predators, lighting, sex-associated differences, anthropogenic
factors, geographical location, food sources, and also epigenetic fac-
tors.

The most important factor that plays a role in the landlocking pro-
cess is water salinity. As anadromous fish species invade lacustrine
environments, their bodies must get accustomed to hypo-osmolarity,
whereas catadromous species must contend with hyper-osmolarity.
The most important cellular components that regulate osmotic re-
lationships within the body are ion channels, and transmembrane
transport systems. lons that are the focus of establishing osmotic re-
lationships within the cell are K*, Na*, and Cl-, and to a lesser extent
Ca* and NH,".

Teleost fish adjust to varying salinity levels by either secreting or ab-
sorbing ions via special mitochondrion-rich cells called ‘ionocytes’
that line the gill epithelium and the intestines, the main sites of water
uptake (Velselvi et al. 2021). Since the gills also play a major role
in fish immunity, parasites are often found in this area of the fish’s
body. These ionocytes contain several ion-transport proteins, includ-
ing sodium-potassium ATPase (NKA), Na"/K*/2Cl- cotransporter
1 (NKCC1), cystic fibrosis transmembrane conductance regulator
(CFTR), apical Na'/H" exchanger 3 (NHE3), and Na'/CI cotrans-
porter (NCC) (Hiroi and McCormick 2012), the first three being the
most important in the regulation of osmolarity in fish.

The function of NKA is to maintain a Na" gradient across the mem-
brane by exuding Na® ions to facilitate ATP production. NKCCl1
admits CI" ions into the cell, whereas the CFTR channel allows
CI" out of the cell in saltwater conditions (Evans 2008). Hypotonic
conditions inhibit Cl secretion by NKCCI1. The efflux of CI- from
the cell in turn enables the secretion of Na" from the blood vessels
towards the external seawater (Marshall 2010). The regulation and
the coordination of these ion channels all work together to maintain
cell volume, which is critical when transitioning between freshwater
and saltwater (Whitehead et al. 2012). Saltwater fish can also adapt
to freshwater if calcium is present in significant amounts since in-
tracellular Ca®* is important for activating these osmolyte channels
(Whitehead et al. 2011).

Euryhaline fish are capable of differentially regulating the expression
of these three ion channels when adjusting between freshwater and
saltwater environments. Euryhalinity may have been the ancestral
state, allowing fish to adapt to various salt concentrations, whereas
stenohalinity is more derived due to the loss of ion channel regu-
lation. This was found to be the case in killifish (Fundulus), which
adapted to a freshwater environment from a saltwater environment
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on several occasions, while losing the genetic factors responsible for
hyperosmotic plasticity (Whitehead 2010). This goes according to
the creation model which involves the devolutionary loss of genetic
elements. It may be that while adapting to a new environment, con-
comitant gene loss barred species from reverse adaptation to their
previous environment.

Osmoconformers are fish species that do not expend energy to main-
tain the osmolarity of their internal medium, by minimizing the os-
motic gradient. These include some species of stenohaline fish. Os-
moregulators use energy-dependent mechanisms to maintain a higher
external osmolarity. These include several estuarine and freshwater
species of fish (Rivera-Ingraham and Lignot 2017).

Ionocytes vary according to the contents of the first three types of ion
channels. Type-I ionocytes occur in both freshwater and saltwater
fish and contain only a basolateral NKA channel. Type-II and type-I11
ionocytes occur in freshwater species, where the type-II ionocyte has
a basolateral NKA channel and an apical NCC channel, and the type-
[T ionocyte has a basolateral NKA and NKCCla channel, sometimes
with an apical NH3 channel. This configuration of ion channels al-
lows for ion absorption. Type-1V ionocytes are the same as type-III
ionocytes, except that they have an apical CFTR channel instead of
an NHE3 channel, and they also occur in saltwater fish species. This
configuration allows for ion secretion (Hiroi and McCormick 2012),
and indicates that the CFTR channel is mainly responsible for salt
excretion. Figure 2 shows the location of the three main types of ion
channels in a typical fish ionocyte.

A second way of classifying ionocytes is whether their apical mem-

6

brane binds a protein called peanut agglutinin (PNA), which was
originally used to identify cells that secrete HCO,". In certain fish,
such as freshwater rainbow trout (Oncorhynchus mykiss), PNA- and
PNA" ionocytes both have a basolateral NKA channel, whereas only
PNA" ionocytes have an apical NHE3 channel, which is restricted to
the gills (Ivanis et al. 2008; Dymowska et al. 2012).

In other fish species, such as zebrafish (Danio rerio), ionocytes can
be classified in yet another manner. Zebrafish have an ionocyte reper-
toire that includes an NCC (Na'/CI") cotransporter cell, which corre-
sponds to the type-II ionocyte described earlier, an NaR (NKA-rich)
cell, that absorbs K into the cell, and secretes Na*. The third type of
ionocyte in this ion channel repertoire is the H-ATPase (HA) iono-
cyte, which secretes H" outwards to the lumen (Chang et al. 2009;
Hwang et al. 2011).

In the transition between freshwater and saltwater environments,
euryhaline fish species, such as tilapia can switch between ion-ab-
sorbing type-III and ion-secreting type-IV ionocytes. In contrast,
the stenohaline zebrafish has only type-III ionocytes. The NKA ion
channel can also be differentially expressed in freshwater and saltwa-
ter. The NKA channel has an a and a § subunit, where the o subunit
binds the ATP, Na*, and K" substrates, and the B subunit is a struc-
tural element. The o subunit has two isoforms, of which NKAala is
more abundant in freshwater, whereas NKAa1b is expressed in high-
er levels in saltwater (Pfeiler and Kirschner 1972). The NHE3 chan-
nel allows saltwater fish to excrete metabolic acids, by exploiting the
Na* gradient across the ionocyte membrane (Claiborne et al. 2002).

Fluctuating salinity levels represent a form of oxidative stress, lead-

CFTR channel

Apical membrane

2K*

NKA channel

3Na*

FISH IONOCYTE

Basolateral membrane

NKCC1 channel

Figure 2. Schematic depiction of a fish ionocyte, showing the regular placement of the CFTR, NKA, and NKCC1 ion channels.
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ing to the production of reactive oxygen species (ROS) (Bal et al.
2021). Taurine acts as a potent antioxidant that protects fish from this
form of stress (Zeng et al. 2009). The levels of antioxidant enzymes,
such as catalase (CAT), superoxide dismutase (SOD), glutathione
reductase (GR), and glutathione peroxidase (GPx) are good mea-
sures of salinity-induced oxidative stress. Certain types of aquaporin
(AQP) also play a role in regulating the response to water salinity in
fish (Hirose et al. 2003). As water salinity increases, the number of
AQP channels decreases to mitigate the amount of water lost due to
hyperosmotic conditions. In general, salinity tends to have an osmo-
protective role against heavy metal ions, such as nickel, cadmium,
zine, and mercury (Gioda et al. 2007; Saglam et al. 2013; Blewett et
al. 2016), which are mainly found inland, thus representing a chal-
lenge to fish during the landlocking process. Increased salinity in-
duces AQP channels that facilitate salt ion transport, as well as the
NKA ion channel to produce energy via ATP.

Differences in salinity may be associated with a massive number of
genes to be differentially expressed, numbering in the thousands.
Gibbons et al. (2017) found that 2,515 genes were differentially ex-
pressed in threespine stickleback due to changes in salinity. These
genes are involved in the migration of epithelial cells during gill
remodeling, transmembrane ion transport, epithelial Ca?* channels
(ECaCs), the NKA and NHE3 channels. Claudins and occludins,
genes that code for proteins that form tight junctions and reduce ion
permeability also change their gene expression levels in freshwater
conditions. AQP3 is also differentially regulated in varying salinity
conditions, with its expression level changing up to thirteen-fold in
freshwater conditions (Whitehead et al. 2011).

Several genes that are differentially regulated between freshwater
and saltwater conditions include the NF-kB family of transcription
factors that respond to infection, stress, and injury (Xiao and Ghosh
2005). V-type H* ATPase was also found to play an important role in
osmoregulation in freshwater fish species, such as sticklebacks, but
also in non-fish species, such as copepods (Lee et al. 2011; Kozak et
al. 2014), by facilitating the uptake of sodium into the cell (Katoh et
al. 2003). Slowing down the progression of the cell cycle is a way
in which fish can repair DNA damage before cell duplication, as has
been observed in fish kidney cells (Kammerer and Kiiltz 2009; Dowd
et al. 2010). Several genes involved in energy production are also
differentially expressed, such as the subunits of the NADH dehy-
drogenase, ATP synthase, and cytochrome B and C (Newmeyer and
Ferguson-Miller 2003).

Water salinity is such an important factor that it also affects other
adaptational factors as well, such as food abundance, immunity, and
exposure to parasites and predators (Saboret and Ingram 2019; Blas-
co-Costa et al. 2013), and can even lead to reproductive differences
(Kozak et al. 2014). For example, Blanar et al. (2011) found that
salinity played a role in the structure and composition of pathogen
species infecting mummichog (Fundulus heteroclitus) in two pollut-
ed estuaries in New Brunswick, Canada.

B. Mitochondrial DNA analysis of different fish groups

In the following, the mtDNA of the nine fish groups around the level
of the order listed in Table 1 will be analyzed to discover what kinds
of putative baraminic relationships exist within them.

1. Acipenseriformes

Acipenseriformes is an order of ray-finned fishes including sturgeons
and paddlefishes. The mtDNA of 29 species was examined from this
group according to the Materials and Methods section. The results
can be seen in Figure 3, and are also available in Supplementary
File 1. According to the heatmap (Figure 3A), there appear to be
two groups within Acipenseriformes, four species from the genus
Scaphirhynchus and the remaining 24 species from various genera,
Acipenser, Huso, Polydon, Psephurus, and Pseudoscaphyrhynchus.
The three Lampetra species formed a distinct outgroup compared
to the two other clusters. The Hopkins clustering statistic was very
good at 0.878. The Silhouette plot in Figure 3B shows a maximum
silhouette value at two clusters, but there may be distortion in the
data. All three groups had a statistically significant p-value.

The smaller group (Scaphirhynchus) had a lower normalized entro-
py value (0.512), with information from FishBase for four out of
five species, and among these three from freshwater. In contrast, the
larger group of 24 species had a normalized entropy value of 0.999,
amongst which an almost even number of species inhabit freshwater,
brackish water, and saltwater. These results clearly show that several
species from this group can inhabit habitats of varying salinities, and
that transitioning between habitats is not difficult. Indeed, 15 of the
22 species which had migratory annotation in FishBase were anadro-
mous, with the remaining seven being potamodromous (completing
their entire life cycle in freshwater).

2. Anguilliformes

Anguilliformes (eels) are long-bodied fish that use peristaltic move-
ment to swim, undulatory waves that are propagated posteriorly
through the animal’s body. These characteristics make these animals
a distinct apobaramin compared to all other fish groups.

A total of 61 species of Anguilliformes were studied. For the heat-
map, the ‘average’ clustering method was used. Besides the three
outlier lamprey species, there are two larger groups, with 19 and 41
species, respectively, as can be seen in Figure 4A. The Silhouette plot
in Figure 4B shows a maximum silhouette value at three clusters.
The Hopkins clustering statistic is 0.804, indicating good clustering.

However, the larger group of 41 species is not statistically signifi-
cant, with a p-value of 0.201. Furthermore, the species Neocyema
erythrosoma does not fit in with either cluster. N. erythrosoma is
also a deep-sea eel, found in depths between 6,600 and 7,200 ft. As
such, it inhabits a different habitat than most eels. This is more evi-
dence that this species belongs to its own holobaramin (Wise 1992).
Poulsen et al. (2018) place members of the genus Neocyema into
their own family, called Neocyematidae, based on divergent mtDNA
sequences and mitochondrial gene order. In contrast with members
of the family Cyematidae, the mitochondrial gene order of N. eryth-
rosoma resembles that of Eurypharynx and Sacchopharynx but is
significantly shorter in length (17,765 bp as opposed to 18,978 bp of
Eurypharynx pelecanoides).

When the gene order for the mtDNA of the four putative Anguilli-
formes groups was analyzed, it was found that some species in group
#3 had a slightly different gene order than the rest of the species.
Thus, group 3 was reassigned to groups 3 and 4, and group 4 was
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Figure 3. Results of the analysis of Acipenseriformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on
mtDNA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote
lower sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity
matrix. C. Barplot showing the different proportion of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the
heatmap.
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reassigned to group 5. Figure 5 displays the gene order of the mtD-
NA from the five revised groups. The difference in the gene order
between these two groups is an inversion of two pairs of genes. In
group 3, the fifth to the second last genes are NAD6, tRNA-Glu,
cytochrome B, and tRNA-Thr. In group 4, the order of these genes is
cytochrome B, rTNA-Thr, NAD6, and tRNA-Glu. Furthermore, the
mean mtDNA length of the species displayed in Figure 5 is 16,686
bp, whereas the mean mtDNA length in group 4 is 17,713 bp.

Cytochrome b is also missing from Myrichthys maculosus in this
group. Cyema atrum is another anomalous species, as the length of
its mitogenome places it in group 4, whereas its gene order is similar
to that of group 3. As to whether there are four or five holobaramins

cluster 1 i
Anguilla anguilla
Anguilla celebesensis
Anguilla dieffenbachii
Anguilla interioris
Anguilla japonica
Anguilla labiata
Anguilla rostrata
cluster 2

Avocettina ins.fa

within the Anguilliformes apobaramin, more study is needed.

The larger cluster of 41 species also has a relatively low normalized
entropy value of 0.485, with 84.1% of the species living in saltwater.
This cluster is made up of 36 genera, listed in Supplementary File 2.
The smaller cluster consists of species from the genus Anguilla. 1t is
more balanced, with an equal number of species (14) inhabiting all
three aquatic environments. Here the normalized Shannon entropy is
the highest (0.946). This gives more evidence that the species in this
cluster have a better potential to adapt to different water salinities
(see Figure 4C). All 14 Anguilla species studied here are catadro-
mous (meaning that they migrate to the sea to spawn).

3. Beloniformes
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Figure 5. Gene order map of species from several groups from the mtDNA analysis of Anguilliformes.
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Beloniformes is an order composed of six families of marine and
freshwater fish with elongated bodies. They are commonly known
as needlefishes or long toms. In this study, the mtDNA of 32 spe-
cies was examined. The four putative clusters can be seen in Figure
6A. The Silhouette plot shows an optimum of four clusters, but this
may be due to distortion in the data. The Hopkins clustering value is
0.777, which represents good clustering. All four clusters are statis-
tically significant. The results of the analysis of these 32 species are
available in Supplementary File 3.

Besides the three control species, three putative baramins were found.
These include twelve species of exclusively marine fish, mainly from
the genus Cheilopogon, but also Cypselurus hiraii, Exocoetus voli-
tans, Hirundichthys rondeletii, and Prognichthys sealei. These are all
species from the family Exocoetidae or flying fishes. This group has
a normalized water type entropy value of 0, with all species being
oceanodromous; fully adapted to saltwater.

Besides this, ten species from various genera (Ablennes, Cololabis,
Strongylura) mainly from Belonidae also formed a cluster. However,
several species from other families also are part of this cluster, such
as Dermogenys pusilla, five species from Hyporhamphus, and Par-
exocoetus brachypterus. These fish come from a mix of freshwater,
brackish water, and saltwater environments, and have a normalized
water-type entropy value of 0.958 (see Figure 6C). Four species were
annotated as oceanodromous in FishBase, two as anadromous, and
one as potamodromous.

Also, ten species of Oryzias (ricefish) were found that populate
mainly freshwater and brackish water. The normalized water-type
entropy value is 0.579. Of the six Oryzias species that had migratory
annotation from FishBase, five were non-migratory, and only one
was amphidromous. This indicates that these fish species have fairly
well adapted to environments with lower salinity levels.

4. Characiformes

This order contains around 2,000 species classified into 18 families.
Fish such as characins, piranhas, and tetras belong to this group. A
total of 54 species from Characiformes were studied. According to
Figure 7A, nine putative holobaramins were found, with a Hopkins
clustering value of 0.778, indicating good clustering. The Silhouette
plot in Figure 7B also shows an optimum of nine clusters. A list of
species clusters and statistics is available in Supplementary File 4.
However, cluster #8, made up of three species, has a statistically in-
significant p-value of 0.148.

A characteristic of these Characiformes clusters is that almost all
species live in freshwater, meaning that they have almost completely
adapted to this type of environment. With the exception of cluster
#1, all other groups had a normalized entropy value of 0. All ten
characids with migratory FishBase annotation were potamodromous.

5. Clupeiformes

This diverse group includes species such as anchovies and herrings
and other fish that are caught for human consumption. Its 400 species
populate marine, euryhaline and freshwater environments in tropical,
subtropical, and temperate climate zones (Lavoué et al. 2014).

Mitochondrial genomes from 96 species from Clupeiformes were
analyzed. The results can be seen in Figure 8, and are available in

Supplementary File 5. The Silhouette plot in Figure 8B shows eight
putative clusters (the outlier group and seven clupeiform baramins).
The Hopkins clustering statistic is 0.832, which indicates good clus-
tering. However, cluster #4, containing 17 species, has a statistically
insignificant p-value of 0.342.

Lavoué et al. (2013) also analyzed the mitogenomes of Clupeiformes
and uncovered nine main lineages. In the present analysis, of the 93
species that were also studied by Lavoué et al., 75 (80.6%) fell into
the same lineage as defined by Lavoué et al. Cluster #5 of the present
analysis of Clupeiformes corresponds to lineage 3+Pristigasteridae,
and clusters #6 and #7 of the present study both correspond to the
family Engraulidae as defined by Lavoué et al. However, Engraul-
idae is made up of the subfamilies Engraulinae and Coiliinae, thus
reflecting the clustering discovered in this analysis. Of the five Coili-
inae species, all five can live in freshwater and brackish water, with
only three species inhabiting saltwater. The species from the sub-
family Engraulinae, on the other hand, inhabit mainly brackish water
and saltwater, with 15 and 17 species, respectively. Only seven en-
graulids inhabit freshwater. Thus, since adaptation to freshwater and
saltwater are occurring in opposite trajectories for these two groups,
it may be that these two groups are separate holobaramins.

The normalized water type entropy values are all above 0.85 indi-
cating that all the clusters were euryhaline (adaptable to different
water salinities). Since all these clusters are euryhaline, this seems to
indicate that not much time has elapsed since the Flood, after which
fish species would have had the chance to adapt to environments
with narrower salinities.

For example, Wilson et al. (2008) found that the freshwater herring
(Clupea) species of Lake Tanganyika could be the result of a recent
invasion by their marine relatives, which have not diverged much
from their freshwater counterparts in their morphology. When the
waters of the Flood receded, some portions could have formed in-
land lakes in Africa, whereas the rest drained off the continent. These
specific Clupea species could have been localized to that portion of
the receding waters that ended up inland, and hence adapted to fresh-
water circumstances, whereas their baraminic relatives adapted to a
saltwater environment in the ocean, being localized to the portion of
the receding Flood waters that drained into the ocean.

6. Cyprinodontiformes

Cyprinodontiformes include small-sized fish, such as killifishes,
minnows, pupfishes, and livebearers, which live mainly in freshwa-
ter and brackish water. They are represented by 1,400 species.

The mtDNA of 69 species was analyzed. The results can be seen
in Figure 9, and are also available in Supplementary File 6. The
Hopkins clustering statistic is 0.831, which means good clustering.
Besides the outlier group, there are eight putative holobaramins as
indicated by the Silhouette plot in Figure 9B. The first seven groups
are statistically significant.

Five of the eight groups contain no saltwater species (see Figure 9C),
and there are only three species, one from each of the remaining
three groups, which can live in saltwater. The majority of the species
(56 out of 69) are non-migratory, which means that these species
have well adapted to freshwater environments (see Figure 9C). The
three species that can live in saltwater, Cyprinodon variegatus, Fun-
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Figure 6. Results of the analysis of Beloniformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on mtD-
NA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote low-
er sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity matrix.
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Figure 7. Results of the analysis of Characiformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on mtD-
NA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote low-
er sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity matrix.
C. Barplot showing the different proportion of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the heatmap.
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Figure 8. Results of the analysis of Clupeiformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on mtD-
NA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote low-
er sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity matrix.
C. Barplot showing the different proportion of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the heatmap.
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dulus heteroclitus, and Poecilia latipinna are euryhaline and can live
in all three salinity habitats.

Recently, two new species of killifishes from the genus Austrolebias
(Austrolebias botocudo and Austrolebias nubium) were discovered
1000 meters above sea level in the Araucaria Forest domain in the
highlands of southern Brazil (Lanés et al. 2021). Species from the
genus Austrolebias and Kryptolebias from group #8 are non-migra-
tory. While it is possible that A. botocudo and A. nubium became
landlocked species by migrating to their present location, it could
also be possible that these fish were entrapped in their highland en-
vironments as the receding waters of the Flood flowed off the South
American continent. The species from this cluster belong to the fam-
ily Rivulidae (killifishes), the fourth most diverse clade of Neotrop-
ical fishes. They have a characteristic annual life cycle, diapausing
eggs, and delayed embryonic development. Two species of the ge-
nus Kryptolebias are self-fertilizing (hermaphroditic), whereas two
genera from Cynopeocilini fertilize internally (Loureiro et al. 2018;
Costa et al. 2016). Costa (2004) and Hertwig (2008) list 22 synapo-
morphic traits, mainly of the cranium, that characterize the family
Rivulidae, suggesting that this family is discontinuous with all other
fish.

The genus Austrolebias is an interesting monobaramin within Riv-
ulidae. This baramin was the only one with an insignificant p-value
(0.472), and a mean mtDNA sequence similarity of 0.566. These dif-
ferences could be due to the high rate of base substitutions in their
mitochondrial genomes (Garcia et al. 2002). Furthermore, the ge-
nomes of Austrolebias species underwent large-scale expansions,
and are approximately twice the size of the genomes of most rivulid
species. The DNA content of 5.954+0.45 pg, compares to the mean
C-value of other rivulids of 2.98 pg (Garcia et al. 2014). This results
in larger species diversity (Mank and Avise 2006). Indeed, of the
36 genera within Rivulidae, Austrolebias has the largest number of
species (53), according to the National Center for Biotechnology In-
formation (NCBI) Taxonomy Database (see Table 2).

7. Elasmobranchii

This subclass of Chondrichthyes consists of sharks, rays, skates, and
sawfishes, and numbers around 1,150 species, making up around
3.3% of all fish. These fish form an apobaramin in that their skeleton
is made up of cartilage, as opposed to bony fish (Osteichthyes). They
are characterized by five to seven gill slits behind their head, rigid
dorsal fins, and multiple rows of teeth. Their skin is also covered
by tough dermal scales called placoid scales. Sharks make up the
superorder Selachii, whereas rays, skates, and sawfishes make up the
superorder Batoidea.

In this study, the mtDNA of 167 species was examined. The results
can be seen in Figure 10 and are also available in Supplementary File
7. The heatmap in Figure 10A shows six putative baramins. How-
ever, the Silhouette plot shows five optimal clusters in Figure 10B,
which indicates possible torsion in the data. The Hopkins clustering
statistic is 0.890 which denotes very good clustering. Besides the
outlier group, there are five putative holobaramins, each of which has
statistically significant p-values.

While sharks and rays have different body plans, it might be the case
that God created multiple shark and ray baramins, as suggested by

Table 2. Number of species in each of the 36 genera in the family Rivulidae.

Genus No. species

Austrolebias 53

Hypsolebias 39

Anablepsoides 31

Melanorivulus 21

Cynolebias 18

Cynodonichthys 15
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Figure 10. Results of the analysis of Elasmobranchii. A. Heatmap showing tentative baraminic relationships between several groups of species based on
mtDNA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote
lower sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity
matrix. C. Barplot showing the different proportion of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the
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the evidence here. Molecular baraminological analysis of snakes and
lizards showed that they are separate apobaramins, and that there are
likely several snake and lizard baramins (Cserhati 2020). As such,
putative elasmobranch holobaramins would be classified as type 3b
Carter baramins.

The first three groups are rays, whereas the fourth and fifth are
sharks. Two of the three ray baramins have a normalized entropy
value of less than 0.25, indicating that the species in these baramins
are adapted to either brackish or saltwater conditions. This is no sur-
prise since sharks and rays are mainly marine animals. These animals
are less adapted to freshwater, as they must constantly swim to keep
afloat; the less dense freshwater makes this more difficult for them.

In contrast with the several putative baramins found within the Cy-
prinodontiformes apobaramin, it seems that the several Elasmobran-
chii groups have adapted to saltwater (see Figure 10C) after the ini-
tial euryhaline stage, as 74% of the species with FishBase annotation
were oceanodromous.

Nevertheless, five shark species from group #4 and three ray spe-
cies from group #3 can also inhabit freshwater. These species are
Carcharhinus leucas (bull shark), Glyphis fowlerae (Borneo river
shark), Glyphis gangeticus (Ganges shark), Glyphis glyphis (Bizant
river shark), Rhizoprionodon acutus (milk shark), Potamotrygon
magdalenae (Magdalena River stingray), Potamotrygon motoro
(ocellate river stingray), and Potamotrygon orbignyi (smooth back
river stingray). Of these, C. leucas is known to inhabit freshwater
lakes in Mozambique, KwaZulu-Natal, Nicaragua, and Sydney Har-
bour, Australia, a large temperate estuary (Smoothey et al. 2019).
This species leads a catadromous lifestyle, using natural rivers and
estuaries as nursery grounds before migrating out to the sea (Werry
et al. 2012). It is possible that as the Flood waters receded, separate
groups of bull sharks could have been entrapped in inland lakes in
these three locations. The capability of male great white sharks to
undertake transoceanic migrations observed by Pardini et al. (2001).
These animals could have been entrapped in these freshwater lakes
recently since they have not had much time to diverge morpholog-
ically.

8. Pleuronectiformes

The order Pleuronectiformes consists of around 700 species such as
flounders, turbots, and soles. These fish are characterized by the fol-
lowing synapomorphies: a flat body, with both eyes on one side of
their head, with one of the eyes migrating to the other side of the
head during development. Their dorsal fin is also positioned dorsal
to their skull (Campbell et al. 2013). They also have a muscular sac
in the eye called a recessus orbitalis, which can fill with fluid, there-
by protruding the eyes above the plane of the fish’s body (Chapleau
1993). No extant flatfish have been discovered that have intermediate
skull morphology. These fish apparently form an apobaramin, as they
are unrelated to all other fish. Evolutionists such as Lamarck (1809)
hypothesized that the ancestors of flatfish lay flatly on the seabed in
extremely shallow water. This is exceedingly hard to imagine, be-
cause, as such, flatfish ancestors would become prey animals that
would be very easy to capture.

The mtDNA of 72 species of Pleuronectiformes was analyzed. The
results can be seen in Figure 11 and are also summarized in Supple-

mentary File 8. The heatmap in Figure 11A shows six clusters. The
Hopkins statistic is 0.809. The Silhouette plot (Figure 11B) shows a
maximum value at 8 groups, although there may be distortion in the
data. Just as with sharks and rays, flatfish also may form multiple
baramins, despite their general morphological similarity with one
another.

Besides the outlier group, there were four putative holobaramins
with at least three species, each one of them with a statistically sig-
nificant p-value. Groups #2 and #3, of 27 and 16 species respectively,
both have a normalized water-type entropy value of just over 0.5.
These fish live predominantly in saltwater.

Group #4 with 12 species is comprised of species that exclusive-
ly inhabit saltwater environments (see Figure 11C); thus, their nor-
malized entropy value is 0. The last group, with 15 species has a
normalized water type entropy value of 0.896, with four, eight, and
14 species from the genera Cynoglossus and Paraplagusia, living in
freshwater, brackish water, and saltwater respectively. This suggests
that this putative baramin is still in the euryhaline stage.

It is noteworthy that here also the gene order of the mtDNA differs
between groups #4 (Arnoglossus, Asterorhombus, Bothus, Chascan-
opsetta, Crossorhombus, Grammatobothus, Laeops, Lophonectes,
and Psettina) compared to groups #2, #3, and #5 (see Figure 12). The
individual mitogenomes of all Pleuronectiformes species analyzed
in this study can be seen in Figure 12. The 3’ end of the mtDNA in
group #4 contains nine gene rearrangements compared to the mitog-
enomes of groups 2, 3, and 5. These genes are tRNA-GlIn, tRNA-Ala,
tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-Asp, NADH6, tRNA-Glu,
and tRNA-Pro. Asterorhombus intermedius differs from the regular
mtDNA gene order in that tRNA-Val has been inserted between the
16S rRNA and tRNA-Leu (Luo et al. 2019). Furthermore, it appears
that the mtDNA of this archaebaramin had two control regions, CR1
and CR2, one of which was differentially lost in some species and the
other in other species (Li et al. 2015).

Group #6, made up of only two species (Samaris cristatus and Sa-
mariscus latus) also has a gene order configuration that is different
from all the other groups. These fish live in deep-water benthic zones
and inhabit only saltwater environments. Their mtDNA gene order
signals discontinuity not only from other flatfishes but also from all
other vertebrates, making them a truly unique group. For example,
the mitogenome of S. /atus has 39 genes (two rRNA genes, 24 tR-
NAs, 13 protein-coding genes), as well as a duplicated control region
and a 376 bp non-coding region, inserted between tRNA-Phe and
tRNA-Pro (Shi et al. 2014).

9. Salmoniformes

These fish include species such as salmon, trout, chars, whitefishes,
graylings, taimens, and lenoks. The mtDNA of 75 species was ana-
lyzed in this study. The results can be seen in Figure 13 and are also
available in Supplementary File 9. The Hopkins clustering statistic
is 0.885, which corresponds to very good clustering. The Silhouette
plot in Figure 13B shows a maximum value at four clusters. There is
a difference between the number of optimum clusters as shown in the
elbow plot and the number of groups that seem to be present in the
heatmap. The difference could be due to distortion in the data. How-
ever, besides the outlier group, six statistically significant putative
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Figure 11. Results of the analysis of Pleuronectiformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on
mtDNA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote
lower sequence similarities, and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity
matrix. C. Barplot showing the different proportion of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the

heatmap.
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Figure 12. Gene order map of species from several putative groups found in the mtDNA analysis of Pleuronectiformes. The gene order may suggest a pos-
sible division of these species into groups.
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Figure 13. Results of the analysis of Salmoniformes. A. Heatmap showing tentative baraminic relationships between several groups of species based on
mtDNA sequence similarity. Darker, redder colors denote higher sequence similarity, thus common baraminic status, whereas lighter, yellower colors denote
lower sequence similarities and different baraminic status. B. Silhouette plot showing the optimum number of clusters in the mtDNA sequence similarity
matrix. C. Barplot showing the different proportions of species living in freshwater (green), brackish water (red), and saltwater (blue) in the groups in the

heatmap.
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holobaramins were discovered (see Figure 13A). These include the
following groups: group #1: the genus Salvelinus (chars or trouts),
group #2: Salmo + Parahucho (salmon and taimens), group #3: the
genus Oncorhynchus (Pacific salmon and Pacific trout), group #4:
Brachymystax + Hucho (lenoks and taimens), group #5: Coregonus
+ Stenodus (whitefishes), group #7: the genus Thymallus (graylings).

Four of the six statistically significant groups have a normalized en-
tropy value greater than 0.9. This means that the species in these four
putative baramins are in the process of transitioning from euryhalin-
ity towards stenohalinity. 27 of the 28 species that are anadromous
according to the FishBase migration annotation come from these
four groups. Groups #4 and #7, with normalized entropy values less
than 0.5 have no species that live in saltwater. Only one of the eight
species from these two groups with migratory annotation in FishBase
lives in saltwater and one is potamodromous and three are non-mi-
gratory (see Figure 13C).

CONCLUSIONS

The original question posed in this study was whether fish would
have been able to survive different salinities during the Flood. The
evidence presented here gives strong support to the idea that indeed
this is possible. Even some evolutionary researchers think that eu-
ryhalinity was the ancestral state of many fish groups. According to
some researchers, euryhaline species that inhabit estuaries are the
most capable of invading new environments with different salini-
ty levels (Lee and Bell 1999; Schultz and McCormick 2012). The
great majority of fish before the Flood could have been euryhaline,
allowing them to adapt to varying water salinity as they migrated
into more specialized ecological niches. Different fish groups would
then become obligatory saltwater or freshwater species after a period
of adaptation, such as landlocking.

Some researchers suggest that the majority of extant fish are stenoha-
line (Gibbons et al. 2017). In contrast, as we have seen here, 46.8%
of all putative groups found in this study (22/47) are euryhaline,
where a euryhaline group is defined as having at least one species
from saltwater, brackish water, and freshwater (see Figure 14). This
also indicates that not much time has elapsed since the Flood since
most kinds are still in transition from euryhalinity to stenohalinity.
If longer time had eclapsed, then we would expect to see the great
majority of species having adapted to either freshwater or saltwater
environments.

In Figure 14 we can also see that seven groups have species adapted
to brackish water and freshwater, three adapted to both brackish wa-
ter and saltwater, and one adapted to both freshwater and saltwater.
In total, 33 out of 47 groups (70.2%) have lost the ability to adapt to
one of the environments. In comparison, 22 of the 47 groups (46.8%)
are ‘still’ adapted to all three water environments. This indicates that
some of the species in many groups are still transitioning towards
either freshwater or marine environments, whereas almost half are
still undifferentiated. The species from ten groups live exclusively in
freshwater, and four groups inhabit marine environments only. This
means that only 29.8% of all groups have fully adapted to only one
environment. Variation of freshwater and saltwater species within a
group (a baramin) may also imply rapid adaptation by these species.

The Flood also serves as a good explanation as to why there are

groups
B =
B =
B =
B -
| B
B

Figure 14. The number of putative holobaramins discovered in this study
that contain species that live in one or more water salinity categories. F =
freshwater, B = brackish water, S = saltwater.

freshwater species within putative baramins with a majority of salt-
water species. For example, shark species such as C. leucas can live
in freshwater environments, such as lakes in Nicaragua. It also ex-
plains why certain freshwater Clupea species live in Lake Tangan-
yika, whereas their marine counterparts have not yet diverged from
them morphologically. What this may mean is that during and after
the Flood, different fish kinds were able to differentiate into either
freshwater or saltwater specialists. It is possible that the euryhaline
ancestor of species within a kind had a more robust (diverse) ge-
nome, which allowed it to survive in environments of varying salin-
ities. Those extant stenohaline species that occupy only freshwater
and saltwater niches most likely underwent gene depletion and lost
part of their genetic machinery that allowed them to survive in salt-
water or freshwater environments.

The holobaramins defined here are tentative and need further verifi-
cation. The mtDNA is only a small fraction of the genome, and thus
inferences based on sequence similarity are limited. As we have seen
in the case of the three rivulid species, mtDNA substitution rates can
vary.

It is also worth noting that in some cases, the gene order (or gene
configuration) of the mtDNA might be useful to help delineate be-
tween kinds, as we have seen in the case of Anguilliformes and Pleu-
ronectiformes. Based on sequence similarity as well as gene order,
N. erythrosoma may be classified in its own holobaramin, even into
its own family. Since there was little time since the Flood for muta-
tions to accumulate in the mtDNA, the configuration of genes in the
mtDNA, mtDNA sequence similarity, the length of the mitochondri-
al genome, and GC% (the percent of G’s and C’s in the genome) are
very similar among species within the same holobaramin. We must
note here that mutations themselves are only indicative of divergence
from an ancestral mtDNA state. It has been shown that a very large
proportion of vertebrates have a highly similar mtDNA gene order
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(Liu et al. 2005). As such, differences compared to the general ver-
tebrate mitochondrial gene configuration might possibly be used to
discern between holobaramins in some cases.

This phenomenon is somewhat rare, as we have seen that in only
three of 49 cases the gene order differs significantly in one baramin
compared to other baramins. Besides N. erythrosoma, the gene or-
der of two species of deep-sea gulper eels (Saccopharyngiformes),
namely Eurypharynx pelecanoides (the pelican eel), and Saccophar-
ynx lavenbergi (the whiptail gulper) also diverge from the typical
vertebrate mtDNA gene order (Inoue et al. 2003). In these two spe-
cies, two gene groups, namely NADS and NADG6 as well as ATPS,
ATP6, COIIL, and NAD3 are positioned to the left of the gene group
NAD?2, COI, and COII.

Lastly, in several of these groups (eels, sharks, rays, flatfish), the use
of mtDNA sequence similarity may be useful in delineating mul-
tiple putative holobaramins within these apobaramins. However, it
may also be the case that mtDNA shows the existence of different
sub-lineages within the same holobaramin. This highlights the utility
of using molecular data in baraminology studies to discern possible
molecular discontinuity beyond the available morphological discon-
tinuity. Since we do not know the exact identity of the fish kinds
created during Creation Week, it may be possible that multiple eel,
shark, ray, or flatfish kinds were created. These kinds may look sim-
ilar to one another externally, but their mtDNA sequences are differ-
ent. However, molecular data must be augmented by other lines of
evidence, such as morphological data.

NOMENCLATURE

Allogenic parasite: a species of parasite that lives in both freshwater
and saltwater.

Amphidromous: fish that migrate between saltwater and freshwa-
ter without the intent of spawning. This may involve laying eggs in
freshwater estuaries, which then float out to sea.

Anadromous: fish that migrate from freshwater to saltwater in order
to spawn.

Apobaramin: a group of one or more baramins, which is outwardly
discontinuous with all other species.

AQP: Aquaporin, a cell membrane channel that allows water to
cross the cell membrane.

Baramin: a created kind, a reproductive community, with inward
continuity and outward discontinuity between species. This is true of
the baramin created during Creation Week, however, by today these
kinds may have differentiated so that there are reproductive barriers
between groups within the same kind.

Brackish water: water that has a salinity level between that of
freshwater and saltwater, from 0.5-29 ppt (parts per thousand) of
dissolved salts.

CAT: catalase enzyme.

Catadromous: fish that migrate from saltwater to freshwater in or-
der to spawn.

CFTR: cystic fibrosis transmembrane conductance regulator.

DEG: differentially expressed gene.

Diadromous: fish that migrate between saltwater and freshwater in
order to spawn.

Euryhaline: an aquatic organism that can live in both freshwater
and saltwater.

Freshwater: water that contains less than 0.5 ppt of dissolved salts.
GPx: glutathione peroxidase enzyme.
GR: glutathione reductase enzyme.

Holobaramin: the complete set of known organisms that make up
a baramin.

Hypertonic: high salt concentration.
Hypotonic: low salt concentration.

Monobaramin: a group of species that are continuous with one an-
other without regard to continuity with all other species.

mtDNA: mitochondrial DNA.

NCC: Na'/CI cotransporter.

NHE3: apical Na'/H" exchanger 3.

NKA: sodium-potassium ATPase (NKA) channel.
NKCC1: Na*/K*/2CI cotransporter 1.

Oceanodromous: a fish species that complete its entire life cycle in
saltwater.

Potamodromous: a fish species that complete its entire life cycle in
freshwater.

ROS: reactive oxygen species.

Stenohaline: an aquatic organism that can tolerate only a narrow
range of salinity.

Saltwater: water that contains >29 ppt of dissolved salts.
SOD: superoxide dismutase enzyme.
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