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HUMAN BRAIN FUNCTION ABOVE ALL OTHER AND THE CREATION MODEL

James D. Johansen, School of Engineering and Computational Sciences, Liberty University, 1971 University Blvd., Lynchburg, 
Virginia 24515 jdjohansen@liberty.edu

ABSTRACT
The human brain functions at a level beyond any other brain among all animals. Since human beings are made in the image of 
God (Imago Dei), there must be signatures of this fact in its design. This paper will introduce an engineering methodology for 
exploring this concept. In terms of scope, this paper will focus its brain exploration on a key neurological building block, neu-
rons, and networks of them. Later works will explore other aspects. An architectural model of neurons and neural networks in 
the human brain, the central nervous system, and the body is developed. Additionally, a Creation Model is constructed. Utilizing 
these models offer the potential to unpack human Imago Dei reality. This premise provides a rich area to explore that leverages 
the Biblical creation to capture the engineering framework God used in fashioning creation and His crowning achievement, 
human beings. By including the design and purpose of man from a biblical point of view, the most significant engineering 
context for human brain processing can be captured. A computer science full compute stack model will map neuron and neural 
network functions to computing layers. To adequately include human capabilities, it is shown that an extra full compute stack 
layer is required. The resulting insight from its inclusion is discussed. The paper will analyze brain neurons and neural networks 
using systems engineering methods and the systems modeling language (SysML) to capture architectural drivers. The aim is to 
provide new insight and guide future work. Two complimentary architectural modeling points of view are included, (1) neuro-
science: where biological neuron and neural network details are captured at a top level, and (2) neuromorphic computing: where 
the artificial implementation approaches of neuron and neural network are highlighted. The answers to three research questions 
are discussed. (1) How does a Creation Model provide additional insights and context for the implementation and mission of 
human beings? (2) What modifications to the full compute stack model are required to capture unique human brain function? 
(3) What observations about human brain function can be made from the neuron and neural network architectural models?

KEYWORDS
Neuroscience, neuromorphic computing, neuron modeling, spiking neural networks, design patterns, model-based sys-
tems engineering (MBSE), systems modeling language (SysML), architectural modeling, biomimicry, creation model

Johansen, J.D. 2023. Human brain function above all other and the creation model. In J.H. Whit-
more (editor), Proceedings of the Ninth International Conference on Creationism, pp. 288-315. 
Cedarville, Ohio: Cedarville University International Conference on Creationism.

I. INTRODUCTION

A. Overview

Man is created in the image of God, and as a result, humanity has 
computational and reasoning abilities unparalleled by any animal. 
This puts humankind in a unique position. No other being has this 
distinction. How can the unique characteristics captured in the hu-
man brain be explored and show the differences between human 
brain function and every other animal brain function? It can take 
much work to navigate. Active neuroscience research is ongoing to 
clarify our understanding of human brain biology. Plus, biomimicry 
seeking to make more efficient neuromorphic computing capability 
is being pursued with a good potential return on investment.

In this paper, the neuroscience research findings will be assessed 
from an engineering point of view. If one asks, “How should one 
design the human brain?,” it would require going through a struc-
tured systems engineering effort. Unfortunately, there are many gaps 
in our understanding of how the human brain works at many levels, 
making reverse engineering difficult and currently incomplete. Still, 

a structured engineering process can uncover the architectural and 
design trades required to develop a functional design.

Below are several term definitions used in the paper, which may be 
unfamiliar to some.

•	 Full Compute Stack is a computer science-based model term 
used to describe a layered approach to capturing the levels of 
computing.

•	 Neural Circuits are biological neural networks. At times the 
term neural network is also used.

•	 Neuromorphic Computing is a term used to describe arti-
ficial neural networks that aim to do involved computational 
tasks characteristically done by biological brains. There may 
not be an exact one-for-one mapping between biological and 
artificial implementations.

•	 Neural Networks are connections of neurons that coopera-
tively work together in artificial implementations of compu-
tational capabilities.
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•	 Spiking Neural Networks is a term usually referring to ar-
tificial neural network implementations that seek to capture 
biological neural networks’ capability that “spikes” or puls-
es when neurons are activated as required to participate in a 
group-distributed task. Otherwise, the neurons stay in a very 
low-energy mode. Since this is based on biological function, it 
is sometimes used to describe biological neural circuits.

B. Research questions

Three research questions that build upon each other are answered in 
this paper. These questions bound the efforts for this research effort. 
The portions of the Results section that refers to each question are 
highlighted. The discussion section will provide the most complete 
answer to each one that can be inferred from the architectural model 
and assessment.

First, how does a Creation Model provide additional insight and 
context for the implementation and mission of human beings? 
Since God created the heavens and the Earth, God the engineer had a 
master plan for His implementation. With human beings being made 
last as the crowning part of creation, there are many ways and many 
levels in which they engage with these resources.

Second, what modifications to the full compute stack model are 
required to capture unique human brain function? The full com-
pute stack model cannot capture our Imago Dei faculties without 
modifications. Human brain function, above all others, shows a clear 
differentiation from animals with the human spirit and the manifold 
engagements that occur with the Holy Spirit.

Third, what observations about human brain function can be 
made from the neuron and neural network architectural models? 
Much work has been done in both neuroscience and neuromorphic 
computing. With so many basic features in neuroscience that still are 
unknown, capturing architecture models can provide a framework 
for how to view this complex information. 

With these three questions answered, it will be clearer why human 
brain function is above all else and how this occurs, with the focus in 
this paper being from the perspective of neuronal and neural circuits.

C. Scope

This paper focuses on neurons and neural networks’ contributions to 
brain function. Since both neuroscience and neuromorphic comput-
ing research is being done at this level, it is beneficial to draw these 
two domains together in the context of the three research questions 
shared above. 

This paper does not explore the higher-level implications of neural 
networks, like generative artificial intelligence. Thoughts from Jo-
vanovic and Campbell, who discuss generative artificial intelligence 
capability, help draw out a few scope-related points. “Generative 
modeling is an artificial intelligence (AI) technique that generates 
synthetic artifacts by analyzing training examples; learning their pat-
terns and distributions, and then creating realistic facsimiles. Gener-
ative AI (GAI) uses genitive modeling and advances in deep learning 
(DL) to produce diverse content at scale by utilizing existing media 
such as text, graphics, audio, and video (Jovanovic 2022).” Regard-
ing GAI and this paper’s research questions, there are similarities 
and differences between GAI and human brain function. Human 

brains learn, but not like GAI. Human brains can think abstractly 
and interface with the Holy Spirit, which GAI cannot. This differ-
ence is pointed out by the limitations found in the full compute stack 
model without modification. The details of these differences will be 
explored in future papers that build upon the neuron and neural net-
work observations in this paper.

D. Use of systems engineering tools

Systems engineering is an engineering discipline that focuses on 
successfully designing and integrating functional modules to work 
together as a system. Often, a systems engineer will know only some 
of the details of how each module works, and they have a great deal 
of insight into how it integrates all the parts. When considering the 
human brain, this approach can uncover interrelationships and de-
pendencies that must be accounted for.

E. Compute architecture

Computing architectural levels can be considered as layers feeding 
into one another, starting at the lowest level and working up to the 
more involved levels. The full compute stack provides a framework 
to place functional elements in a structured context. This is used in 
computer science and applied to neuromorphic computing, the disci-
pline of computing that mimics brain function.

Deoxyribonucleic acid (DNA) sequencing has found an innovative 
way to access the bits of information in the double helix and get that 
densely packed information. Unfortunately, it is a destructive pro-
cess that breaks the DNA strands into many pieces. Then, through a 
painstaking process, the pieces are assembled in an orderly fashion 
into the original sequence. A layout of what it should look like is 
commonly used to help fit the pieces together. Like the picture on the 
jigsaw pieces, it guides how to make them fit. As discussed by Wa-
terson, the term used for mapping and assembly of DNA sequences is 
scaffolding. A set of overlapping DNA sequences can be put together 
in a consensus region called a contig. Massing together contigs can 
form scaffolds. These steps help to construct the full genetic sequence 
of an organism. (Waterson, 2002). The methodological concept of 
scaffolding is applied in this architecture modeling exploration. For 
the application in this paper, the full compute stack is an architecture 
that can be used as a scaffolding or a guide to determine how func-
tional elements should relate to one another (Schuman 2022).

F. Neurons

The neuron is the primary building block in the brain, the central 
nervous system, and the interfaces with senses, muscles, and control 
functions. This powerful nerve cell has computing, memory, and in-
put and output capabilities. It is a small computer. A unique feature 
of neurons is that they link together. The brain is full of these linked 
nerve cells. The number of connections between the neurons is or-
ders of magnitudes greater than the number of neurons.

In contrast to a classical computer with separate units for (1) the 
central processing unit, (2) the memory, and (3) the input and output 
within a Von Neumann architecture, each neuron has a version of 
all three of these features in the same unit.  As will be discussed in 
the results section, the computing capability of one neuron is not 
analogous to a laptop central processing unit, but it is at a lower 
level of computing functionality within the central processing unit. 
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Thus, a neuron divides computing elements at a lower level than in 
electronic computing. Plus, a network of neurons forms a grid of 
computers, making a computer cluster commonly called a neural 
network. Although the Von Neuman architecture does not completely 
characterize the features of biological neurons and neural networks 
(Zhang 2020), it is still a useful and familiar benchmark to frame 
some aspects of the nature of the neuronal computing landscape. Per-
haps a biological neural network can be viewed as exemplifying an 
implementation of a Von Neumann architecture like an artificial neu-
ral network (Christensen 2022). While the aggregate neural network 
forms a more comprehensive central processing unit, each neuron 
contains a more focused processing capability which has yet to be 
comprehensively characterized.

Although there is a standard classification of neurons, there are vari-
ations in the type of neurons throughout the human body. Neurons 
in the brain are focused on commutating. The central nervous sys-
tem neurons are often more focused on connections and signaling. 
Neurons connected to sensory organs focus on receiving signals and 
translating information into spiking pulses that can be passed on to 
the brain for processing and resulting decisions from the inputs.

G. Neural network computing

Once neurons connect, they form neural networks. When these con-
nections are established, they work together to determine a solution. 
How the neurons work together involves a variety of factors. Several 
neurons can pass a signal to the next-level neuron, which weighs the 
inputs from the various inputs and produces a result. This forms the 
basis for creating a neural network.

Neural networks are a widely used and essential architectural feature 
in artificial intelligence and machine  learning. In the brain, local-
ized areas focus on different types of functions. A degree of human 
brain mapping has been done by direct brain stimulation during some 
cranial operations where it required having the brain exposed (Kim 
2018; Huang 2017; Böhm 2016; Wanner 2018; Ryu 2018; Huckle-
berry 2018; Faraut 2018). Thus, there are categories of neural net-
works localized to specific parts of every human brain.         

II. METHODOLOGY

A. Engineering perspective toward biological systems

In terms of method orientation, this paper utilizes an engineering per-
spective when analyzing neuron-related biological data and how to 
consider architecture and function. This contrasts with the excellent 
and extensive body of neuroscience and neurology research work. 
This paper aims to provide a new context that can uncover additional 
insight. Systems engineering is a mature discipline with a well-de-
fined architectural and design methodology. One can conceive of a 
needed capability, define the requirements, and progress to a func-
tional layout. A design is selected and developed after making design 
trades and analyzing alternatives. Manufacturing and testing then 
take place.

Another methodological consideration throughout this paper is a par-
allel discussion of biological and artificial neuronal systems. Explor-
ing biological systems can aid in artificial designs that aid neuromor-
phic computing, neural networks, and machine learning applications. 
The exploration of artificial systems provides insights into detailed 

system developments that can be compared with a biological coun-
terpart to see what is the same and what differs. Thus, each neuronal 
system evaluation can benefit from the other.

This project assumes that an architecture is already in place when 
looking at biological systems. Therefore, reverse engineering can be 
done to uncover the approach and the design choices taken. Engi-
neering tools can help in this process, and they are discussed next.

B. Use of systems engineering tools

System design and development have matured over several centuries, 
if not for millennia. As this process has matured, the development 
and application of engineering tools have become more standard-
ized, and their utility has been demonstrated to provide a significant 
return on investment in product development. Applying these tools 
to biological systems is just starting to show its utility. This paper 
will not focus on a historical survey of this progress but instead jump 
in and use these tools.

Systems engineering methods can help product development over 
all the phases of a system being evaluated, designed, tested, and 
deployed. This is readily applied in neuromorphic computing and 
the creation of artificial neural networks (Christensen 2022; Zheng 
2019; Schuman 2022; Shrestha 2022).

An orderly way of exploring neurons and neuromorphic computing 
is to group the topics into architectural levels. The layers of the com-
pute stack are used to frame the neuronal capability. This process is 
developed in Section 4. Each of these levels is defined, along with 
research questions identified with each of them.

C. Utilization of a Creation Model

This paper will include a creation week model. Using engineering 
tools, it will point out the created works mentioned each day and the 
order by which things were created. It will show how creating human 
beings last is significant.

III. RESULTS

This section will discuss the Creation Model, the architecture frame-
work that utilizes the full stack compute model, neuron models, and 
neural circuit and neural network models. In terms of the paper’s 
research questions, each of these topics will help answer them. The 
neuron and neural network architectural models provide a larger con-
text for their operations. The Creation Model converts the creation 
account into engineering and architectural terms to compare it with 
the neural models and the full compute stack framework. Since the 
full compute stack model cannot adequately address the mental fa-
cilities of human beings, a use case that includes lower-level brain 
function captured in the full compute stack, higher-level abstracting 
thinking that goes beyond generative artificial intelligence, and the 
engagements with the Holy Spirit.

Note that the architectural model diagrams may seem straightfor-
ward or simplistic. There is an engineering rationale behind this. 
Systems engineering thinking tries to see the big picture. To do this 
requires thinking about “black boxes” and their relationships, where 
the details within individual architecture components, or black box-
es, may not be considered at this moment of high-level exploration to 
see the big picture. This is part of the methodology being addressed 
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in this paper.

Getting a perspective of what has been used in thinking through these 
concepts is useful. There are many related areas in neuron research 
and neuromorphic computing. The areas examined in this paper are 
neuron models, classifications, and architecture; neural circuits and 
response experiments; spiking neural networks; neuromorphic com-
puting; and neuromorphic computing simulation, as shown in Fig. 1.

Research 
Threads

C. Spiking Neural Networks

D. Neuromorphic Computing
A. Neuron Models, Classifications, 
and Architecture

B. Neural Circuits and Response Experiments

ArchitectureModels Classifications

Circuits Response Experiments SensorsSpiking Learning

Networks MimicBrain

Neuroscience Neuromorphic Computing

Figure 2.  Research focus areas.

Figure 1.  Literature review highlights.

A Neurons Models, Class., and Architecture
1 Molecular Biology of the Neuron
2 Models of Neurons
3 Mapping Proteins to Parts of the Brain
4 Retinal Neuron Classification
5 Structural and Functional Units of the Neuron
6 Relationship between Brain Neurons and Models
7 Neuron Gene Expression
8 Method for Recording Single Neuron Activity
9 Vis. of Neuronal Structures from Human Brain Testing
10 Neuronal Activity Mapper
11 Proposed Architecture of Human Memory
12 Methylation of Neurons
13 Limitations of Artificial Neural Networks

B Neuron Circuit and Response Experiments
1 Organic Electronic Sensor Nerve Driving a Motor
2 Brain Circuit Findings from Testing Drosophila Flies
3 Experimental Results of Spinal Cord Circuit Testing
4 Neuron Activity Mapping from Zebrafish Experiments
5 Vision System and Simulation Response Comparison
6 Neuron Types in the Neocortex
7 Neuron Memory Experimental Results
8 Neuron Activity and Memory Human Trial Results

C Spiking Neuron Networks
1 Visual System Neuron Spiking Model
2 Neuron Sensor Firing to the Brain
3 Neuron Algorithms and Trades
4 Spiking Neuron Algorithms
5 Brain Neural Networks
6 Phosphorylation Signaling in Proteins
7 Human Learning

D Neuromorphic Computing
1 Energy-Efficient Neuromorphic Computing
2 Neuromorphic Computing Chip
3 Neuromorphic Computing Roadmap
4 Neuromorphic Computing Algorithms & Apps
5 Human Brain in Silicon
6 Big Data Applications of Neuromorphic Com-

puting

Fig. 2 highlights five thematic areas that are addressed in this re-
search paper: (1) neuron models, classifications, and architecture, 
(2) neural circuits and response experiments, (3) spiking neural net-
works, and (4) neuromorphic computing. Note that there are two 
major areas where the literature can be grouped, neuroscience and 
neuromorphic computing. The details of this literature review are 
included in the appendix.
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A. Creation Model

The Creation Model will allow for comparison, in the same engi-
neering terms, creation features and what human brain function can 
be understood from the neuron and neural network models used in 
this paper. Thus, brain function and the environment it was created to 
function within are drawn together. It allows the first research ques-
tion to be answered, how does a Creation Model provide additional 
insight and context for the implementation and mission of human 
beings?

Genesis 1 provides a roadmap for how creation took place. One can 
consider what was created each day and the order. There is an inter-
relationship between the parts of creation week. As the details of the 
creation week unfolds, the later items utilize what was already con-
ceived. Thus, there is an intentional plan that is laid out. This section 
will discuss the creation week element and present the details within 
a Systems Modeling Language (SysML) engineering tool.

First, consider the overall flow of creation. A title for each day of cre-
ation is generated, attempting to capture in engineering terms what 
takes place.  Each day forms part of creation, so they all feed into the 
block on the left. Day 1 starts creation with space, time, light, and 
matter. These basic building blocks must be in place before anything 
else can continue. Day 2 forms the Earth’s expanse, creating an at-
mosphere and space where life can exist above the terrestrial water 
and below the atmospheric moisture. Day 3 makes the lands, oceans, 
and vegetation. Thus, several ecosystems are put in place. Day 4 es-
tablishes the space expanse. The sun, moon, and stars are correctly 
oriented with the Earth. Day 5 set the beginning of eukaryotic life 
with the animals of the sea and the birds in the air. Finally, Day 6 

continues the creation week by forming animal life on land. Ulti-
mately, the crowning portion of the creation week concludes with 
the creation of humanity. Humans are made in the image of God and 
given his divine charter to reign over creation. Note that the number 
of items listed in the daily creation events varies. The days with few-
er items indicate they deserve a day all to themselves. 

After this overall look at the creation week, it is helpful to go down 
to the next level of detail since it is included in the creation week 
account. Fig. 3 summarizes the six days of creation in one graphic.

1. Day 1 — Space, time, light, and matter

Day 1 starts with the formation of space and time. This fact is not 
stated but is implied in the Genesis 1:1 phrase referring to the cre-
ation of the heavens and the Earth. There can be no heavens and the 
Earth without space and time. So, there are two items laid out first. 
Continuing to the next item created there is electromagnetic radiation 
or light. Light requires space and time and the heavens and the Earth 
to have an effect. Light interacts with matter, so in the process of 
making the heavens and the Earth, the material matter of the heavens 
and the Earth is formed. Next, there is the distinction between when 
there is electromagnetic energy present, light, and when there is no 
electromagnetic energy present, darkness. More characteristics of 
electromagnetic energy are implied, like the occulting of light when 
a mass is in front of the electromagnetic energy. Hence, the nec-
essary features for an eclipse are present. This leads into the final 
part of Day 1 creation, where there is the potential to have day and 
night. Since time is operational now, the clock has started, and a 
24-hour day is now in place for an observer on Earth, although an 
atmosphere, land, and life have yet to be introduced. 

bdd Creation Week

Creation Week

<<block>>
Creation

parts
Space, Time, Light & Matter : Day 1 {unique}
Earth Expanse : Day 2 {unique}
Land, Oceans, & Vegetation : Day 3 {unique}
Space Expanse : Day 4 {unique}
Ocean and Avian Life : Day 5 {unique}
Land Life, Man Imago Dei : Day 6 {unique}

<<block>>
Day 1
parts

 : Space and Time {unique}
 : Heavens and the Earth {unique}
 : Light and Darkness {unique}
 : Day and Night {unique}

<<block>>
Day 2
parts

 : Earth Expanse {unique}
 : Water Below {unique}
 : Water Above {unique}

<<block>>
Day 3
parts

 : Land and Oceans {unique}
 : Separation of Land and Oceans {unique}
 : Land Vegetation After Kind {unique}
 : Fruit Trees After Kind {unique}
 : Seed Bearing Vegetation After Kind {unique}

<<block>>
Day 4
parts

 : Sun, Moon, Stars in Space Expanse {unique}
 : Light Days, Dark Nights {unique}
 : Signs for Days, Seasons, Years {unique}
 : Sun Governs Light of Day {unique}
 : Moon Governs Light of Night {unique}

<<block>>
Day 5
parts

 : Ocean Life After Kind {unique}
 : Avian Life After Kind {unique}

<<block>>
Day 6
parts

 : Land Life After Kind {unique}
 : Mankind After Kind {unique}

<<block>>
Mankind After Kind

parts
 : Imago Dei Creation {unique}
 : Imago Dei Mission {unique}

Land, Oceans, &
Vegetation

Space, Time,
Light & Matter

Ocean and Avian Life

Earth Expanse

Land Life, Man Imago Dei

Space
Expanse

Figure 3.  Top Level Creation Model.
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2. Day 2 — Earth expanse

Day 2 creation focuses on the habitability of Earth and the basis for 
the Earth’s expanse that exists with the numerous properties required 
to support abundant biological life. First, it is implied that water was 
created on Day 1 so it can manipulate where it is located. An atmo-
sphere is created. Second, water is moved to subterranean locations 
that can be called upon to support plant and animal life. Third, some 
water is transformed into water vapor and resides in the upper atmo-
sphere, acting as a shield for the Earth’s expanse. Water is transpar-
ent in the human visual spectrum, so seeing the space expanse is still 
available. Fig. 5 highlights the creation accomplishments on Day 2.

3. Day 3 — Land, oceans, and vegetation

Day 3 sees several features introduced that are crucial elements to 
sustain life. First, there are distinctive characteristics of land and 
ocean conceived. The ground will have direct access to the atmo-
sphere. The sea can draw nutrients from the atmosphere in different 
ways while in the water. Second, there is the separation of the land 
and oceans. At this point, there is a predictable place for land and sea 
so each domain’s animal and plant life can be adapted to its specific 
intended environment. Third, there is the general creation of vegeta-
tion over the Earth. Fourth, there is the first mention of vegetation, 
which includes providing food for others. Fifth, there are various 
kinds of seed-bearing vegetation, including grains. So, there is an-
other type of food source and a reproductive method for vegetation 
to reproduce with seeds. Fig. 6 highlights the creation accomplish-
ments on Day 3.

bdd Day 3

Day 3 Creation

<<block>>
Day 3
parts

 : Land and Oceans {unique}
 : Separation of Land and Oceans {unique}
 : Land Vegetation After Kind {unique}
 : Fruit Trees After Kind {unique}
 : Seed Bearing Vegetation After Kind {unique}

<<block>>
Land and Oceans

<<block>>
Separation of Land and Oceans

<<block>>
Land Vegetation After Kind

<<block>>
Fruit Trees After Kind

<<block>>
Seed Bearing Vegetation After Kind

Figure 6.  Day Three Creation Model

bdd Day 2

Day 2 Creation

<<block>>
Day 2
parts

 : Earth Expanse {unique}
 : Water Below {unique}
 : Water Above {unique}

<<block>>
Earth Expanse

<<block>>
Water Below

<<block>>
Water Above

Figure 5.  Day Two Creation Model

Figure 4.  Day One Creation Model

bdd Day 1

Day 1 Creation
<<block>>

Day 1
parts

 : Space and Time {unique}
 : Heavens and the Earth {unique}
 : Light and Darkness {unique}
 : Day and Night {unique}

<<block>>
Space and Time

<<block>>
Heavens and the Earth

<<block>>
Light and Darkness

<<block>>
Day and Night

4. Day 4 — Space expanse

Day 4 focuses on the space expanse. First, the sun, moon, and stars 
are placed within the space expanse. Second, the properties of elec-
tromagnetic radiation and matter or leveraged to enable the day to be 
light, with the electromagnetic energy coming from the sun and the 
darkness of night with no direct access to the light of the sun. Third, 
specific orbital relationships are set up between the Earth, the Moon, 
the solar system, and the Milky Way galaxy. This allows for the signs 
of the days, the months, the seasons, and the years when there is a 
completion of the regular cycles that the Earth travels through over 
time. Fourth, the sun governs the light and brightness of the day. The 
light and warmth of the sun promote life. Fifth, the reflected light from 
the Sun on the Moon governs the brightness of the night, for the times 
the Moon is visible at a particular location on the Earth. Fig. 7 high-
lights the creation accomplishments on Day 4.

5. Day 5 — Ocean and avian life

Day 5 begins the process of creating animal life. The description is 
short but focuses on two significant biospheres of Earth. First, the 
oceans are populated with animal life after their kind. Second, the 
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air is filled with birds after their kind. Before the land was filled with 
life, the oceans and skies above were called forth to teem with living 
creatures. Fig. 8 highlights the creation accomplishments on Day 5.

6. Day 6 — Land life and Imago Dei man

Day 6 covers two significant areas in populating the land. First, God 
created the land animals after their kind. Second, God spends more 
detail focusing on the crowning portion of creation, describing the 
details of creation man in the image of God. Two things are ex-
plained, unlike any other part of creation, man is uniquely created 
in God’s image, enabling him to be creative and think at an abstract 
level that no other part of creation can. Then man is given a mission, 
to rule over creation, and to be God’s representative. Fig. 9 highlights 
the creation accomplishments on Day 6.

7. Human brain function above all other

As the crowning act of creation, humans engage with the other parts 
of God’s creation differently and more involvedly. Human beings 
can observe, think, and evaluate what is seen in a manner not equaled 
by any other creation. In the created order, it is clear how what was 
made earlier is shown as a precursor and necessary dependence on 
what is created later. A fish must have an ocean. A bird must have 
an atmosphere to fly in. Ultimately this is played out to the greatest 

extent with humanity. Everything up to this point is leveraged for 
the highest form of creation. There are interdependencies between 
everything created up to the creation of man.

B. Architecture framework

The full compute stack model provides a manner to explore brain 
function. It lays out a scaffolding for the layers that go from simple to 
complex. Utilizing the full compute stack model with brain function 
creates a basis to determine whether the model is adequate to cov-
er human brain function or just animal brain function. Thus, it can 
address the second research question, what modifications to the full 
compute stack model are required to capture unique brain function?

This section introduces an approach to compare biological and arti-
ficial neurons and neural networks by leveraging a framework that 
has been used in engineering development and benchmarking com-
putational capability. This only can capture so much in terms of the 
human brain and how humans leverage our biology but are not only 
physical beings. Still, it is helpful to examine these compute layers 
to point in the right direction where additional capability lies for hu-
manity, being made in the image of God.

1. Use of the full compute stack for architectural levels

An architectural framework bounds a project and provides a struc-
ture to organize major thrusts in a system. This will be utilized in this 
paper. An existing architectural framework will be utilized to struc-
ture areas of exploration in neuron and neuronal system evaluation.

The layers of the full compute stack are used as a framework to cap-
ture the multilayered functional operation of neural systems. The full 
compute stack is a layered abstraction of what a computing capa-
bility can offer and fits well with the purpose of this project. These 
layers are (1) materials, (2)  components and devices, (3) circuits, 
(4) microarchitecture, (5) system architecture, (6) algorithms, and 
(7) applications. The layers are highlighted in Schuman’s neuromor-
phic computing algorithm and applications survey (Schuman 2022), 
and Christensen’s neuromorphic computing roadmap (Christensen 
2022). These references are also discussed in the literature review. A 
summary of these layers is shown in Figure 10.

These layers are discussed next, with observations on both the bio-
logical and artificial sides.

2. Materials

Materials are at the lowest level of architecture considered in this 
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project. Looking at the periodic chart, elements have distinct charac-
teristics. Some fall into categories, like noble gases, semiconductors, 
or metallic materials. Molecules for the next level combine elements 
to make available additional physical phenomena. Water, or H2O, 
which combines two hydrogen atoms with one oxygen atom, is a 
simple molecular example that shows a unique compound that is an 
essential element of biological life.

a. artificial neuron considerations
In electronics, semiconductors are a vital material where an external 
signal can turn the electrical flow on, off, or modulated. Not only is 
it used as is, but doping a semiconductor with other materials can 
generate more targeted physical properties that can be used in other 
full-stacking computing architectural levels. Silicon is a commonly 
used semiconductor, but gallium arsenic is another semiconductor 
that is also used that has specialized properties. Gallium nitride is an-
other semiconductor material promising in high-power applications 
and other areas.

b. biological neuron considerations
In biology, looking at molecular biology gives insights into what 
materials are used and what physical properties they contain. When 
considering proteins, the biochemical composition centers around 
nucleotides. Nucleotides are organic molecules consisting of (1) a 
nucleoside, which in turn is composed of a nucleobase and a five-car-
bon sugar, and (2) a phosphate group. This biochemical shows a 
jump from simple compounds to complex molecular building blocks 
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Figure 10.  Full compute stack layers.

Table 1. Days of Creation and Man’s Response

EVENT GOD’S PLAN AND MAN’S RESPONSE

Day 1 — Space, Time, Light, Matter

Space and Time Can experience space, distance, the passage of 
time

Heavens and Earth Can experience the difference between what is far 
away in the heavens versus close on the Earth

Light and Darkness Created light so man can see creation, feed plants, 
provide warmth, interact with seasonal signs

Day and Night Can experience the differences between day and 
night

Day 2 — Earth Expanse

Earth Expanse God created an environment where life can thrive

Water Below Water to support plant life

Water Above Water to protect the Earth expanse

Day 3 — Land, Ocean, Vegetation

Land and Oceans God created the difference between two domains

Separation of Land 
and Oceans God established the land and ocean layout

Land Vegetation After 
Kind

God created a lush garden environment for man 
to live

Fruit Trees After Kind Man can eat the fruit

Seed Bearing 
Vegetation After Kind Man can eat and plant vegetation

Day 4 — Space Expanse

Sun, Moon, and Stars God created space expanse objects

Light Days and Dark 
Nights God defined light level for day and night

Signs for Days, 
Seasons, and Years God established signs to track time and change

Sun Governs Light 
of Day God established day characteristics

Moon Governs Light 
of Night God established night characteristics

Day 5 — Ocean and Avian Life

Ocean Life After Kind God populated the oceans

Avian Life After Kind God populated the skies

Day 6 — Land Life and Mankind

Land Life After Kind God populated the land

Man Made in God’s 
Image God created and placed man in the garden

Man Given God’s 
Mission God gave man his divine mission
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in biological systems.

This section will briefly discuss the neuron-to-neuron communica-
tion process from the neurotransmitters to the synapses in the first 
neuron, to the interneuron signaling, and finally to the receiving 
neuron receptors. Neuroscience is an active field, and the details are 
not fully understood, so it is harder to characterize than the artificial 
systems counterparts; some perspectives on this are given below. 
In biological neural networks, there are far more synaptic connec-
tions than neurons. Ielmini notes that the synapse-to-neuron ratio is 
10,000 (104). This is a considerable number of synapses compared to 
neurons, which can make crossbar systems quite large to achieve this 
enormous number (Ielmini 2018). 

When considering the materials used in biological neurons and neu-
ral networks, addressing a few questions can help guide how best to 
compare the materials layer in biology versus electronics. First, what 
elements, molecules, biomolecules, and biochemical materials are 
used for each part of the neuron? There is active research in neuron 
molecular biology, but there are limited opportunities to access hu-
man neurons ethically. Some proteins have been identified to be part 
of neuronal processing (Davies 2006). Second, what are the critical 
biomolecular properties that motivate their utilization at the com-
pound level, nucleotide level, protein level, cell circuit level, and 
nerve cell level? Exploring this question will be one of the themes 
explored as each architectural level is discussed.

The neuron-to-neuron communication process starts from the neu-
rotransmitters to the synapses in the first neuron, to the interneuron 
signaling, and finally to the receiving neuron receptors. Davies, and 
his chapter scholars, explore the molecular biology of neurons from 
various active research points of view. In greater detail, it proceeds 
with these steps: First, the transmission of the information starts with 
a discussion of neurotransmitters. The neurotransmitter released 
from one nerve cell binds to the receptor of another nerve cell, which 
results in depolarization or other effects in the target nerve cell. A 
neuron can transfer a signal to a postsynaptic neuron by releasing 
certain chemicals (neurochemicals) into the synapse and activating 
postsynaptic receptors. There are many neurochemicals, on the or-
der of 100. Measurement testing has shown that neurotransmission 
membrane potential changes at certain defined discrete levels, or 
quanta, must occur in multiples of quanta (Davies 2006). Second, 
synapse transmission is primarily controlled by neurotransmitter ac-
tivity. The synapse physically connects with the receiving neuron, 
and several proteins are involved in this connection and exchange of 
information. The postsynaptic density is where the synapse connects 
with a receiving neuron’s dendrite. There are four types of proteins 
present in this area: (1) plasma membrane, (2) signaling, (3) cyto-
skeletal, and (4) linker. They are signaling results by forming protein 
complexes that respond to signals from the membrane surface. Some 
signaling machines have been identified, which reach the next full 
compute stack architectural level (Davies 2006). Third, interneuron 
signaling utilizes signaling machines to transmit the encoded infor-
mation from one neuron to another. One form of signaling is done 
through phosphorylation. The fact that there are several types of 
signaling pathways illustrates the complexity and connectivity that 
exists in neural networks. There is also a link between the nucleus 
and signaling. Calcium ions can act as messengers to link the syn-

apses to the nucleus to pass signaling information (Davies 2006). 
Fourth, signal reception is accomplished by using signal receptors. 
Two types are ligand-gated ion channel receptors and G-protein-cou-
pled receptors (GPCR). Fast synaptic transmission is critical for re-
al-time brain functions. Ligand-gated ion channels can handle such 
rapid processing. These ligand bonding sites can bind to a particular 
neurotransmitter molecule, open a transmission channel, and activate 
signaling. There are many G‑protein-coupled receptors, so much so 
that it comprises one percent of the human genome. These GPCRs 
form the receptors for neurotransmitters, odorants, lipids, neuropep-
tides, and large glycoprotein hormones (Davies 2006). 

Fig. 11 shows the materials and devices that compose the biological 
nucleotide.

3. Components and devices

Components and devices are at the next layer in the full compute 
stack. At this level, material physics phenomena are captured in a 
helpful way that can form a building block for a higher-level com-
puting function. On the artificial or electronic side, components 
consist of various types of transistors, phase-change or memristor 
memories, optical devices, and switching devices. On the biological 
side, components include protein complexes that respond to signals, 
ligand receptors, phosphorylation, and methylation in cytosine-phos-
phate-guanine (CpG) groups. CpG sites are regions of DNA where a 
cytosine nucleotide is followed by a guanine nucleotide and can be 
impacted (silencing genes, switching on or off, or muting them to 
some degree) by inserting a phosphate group between them. To a de-
gree, one can show a mapping of similar functions between the artifi-
cial and biological, but the material and components and devices’ full 
compute stack layers are implemented with very different materials 
and physical phenomena to produce the desired effects. At the device 
level, the basic building block is the neuron. Both artificial and bio-
logical neural networks have other support devices included, but the 
primary focus here is exploring the nature and design of the neuron.

A few questions can be asked here to explore a path forward. First, 
what physical phenomenological properties can be used for the full 
compute stack components and devices layer functions? The Von 
Neumann architecture describes the three necessary building blocks 
for a computing system as (1) a central processing unit (CPU), (2) 
memory, and (3) input and output devices. Components must exist 
to enable these functions as they are put together to form a function-
al and flexible neuron. Second, how are these functions translated 
into functional parts within a particular design motif, like silicon for 
artificial neurons and nucleotides in biological neurons? One must 
consider what materials will the components and devices be built 
upon. With an extensive legacy of parts and infrastructure, the arti-
ficial neuron finds plenty of value in continuing development in sili-
con. Using this design motif allows a smaller near-term investment. 
However, in the long term, there will continue to be a big difference 
between the artificial and biological realization of neurons. 

a. artificial neuron considerations

In the roadmap he developed, Christensen offered many options for 
the components, devices, and circuits necessary to create an artifi-
cial neuron capability, along with functional and efficient neural net-
works. Synapse transmitters and dendrite receptors interconnections 
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can be created using a programable switching device. Axon connec-
tions can be accomplished using nanowires. Sensor and motor func-
tion interfaces are more specialized connections with more stressing 
transmission, reception, and signaling requirements. Memory can be 
accomplished using emerging technologies like memristors, phase-
change memory, valance-change memory, or resistive random access 
memory (RRAM). Neuron nucleus processing can be accomplished 
with a CPU core or a more focused microcontroller (Christensen 
2022).

b. biological neuron considerations

The biological components of the neuron continue to be clarified 
with neuroscience research. Due to easier access, most experimental 
neuroscience research focuses on sensor processing (Ryu 2018) and 
central nervous system transmission and processing (Böhm 2016). 
Synapse transmitters and dendrite receptors interconnections have 
the typical characteristics of general neural circuits for these func-
tions, but they are optimized for the specialized functions in their 
locations. Sensor interconnects circuits are optimized for quick re-
ception. Central nervous system interconnects circuits are optimized 
for high signal-to-noise ratio signal transmission, with periodic 

transmission signal cleanup to maintain signal integrity. Axon con-
nections can extend in the 3-D space of the body over long distances 
(especially for the central nervous system) to make the necessary 
interconnects (Böhm 2016). Sensor and motor function interfaces 
require high-fidelity signaling to accurately convey the information 
to the brain for the bulk of processing (Kim 2018; Böhm 2016; Ryu 
2018). Memory is embedded in a dual-use fashion of signal-connect-
ing circuits of the neuron. Neuron processing is done in the nucleus 
and embedded in a multiuse fashion in the signal-connecting circuits 
of the axons, synapses, and dendrites.

3. Circuits

Neurons, in their various forms, are the major building blocks in neu-
ral operational architectures; as a result, the primary circuit that is 
explored in this paper is the neuron. Circuits are composed of several 
parts that are organized in such a way as to produce the desired func-
tion. Neuroscience research has shown that the neuron is the central 
building block of the brain, the central nervous system, sensor pro-
cessing, and motor control. Just like a Von Neuman computer can 
be constructed entirely from digital logic gates (or circuits), a neural 
circuit can be made from neurons. Thus, there is the introduction of 
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Figure 11.  Nucleotide material composition mapping.
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the basis for a neural network at the circuit level.

Once again, the capabilities discussed in subsection three above will 
be examined here, but now at the next architectural level of the circuit 
in the full compute stack model, specifically (1) dendrite receptors, 
(2) neuron nucleus (soma) processing, (3) neuron memory, (4) sen-
sor interfaces, (5) motor function interfaces, (6) axon connections, 
(7) synapse transmitters, and (8) synapse spiking signaling. Simpli-
fications in the spike implementation are used for artificial spiking 
neural network implementation, and the way voltage is handed will 
vary since biological and electronic circuits are very different at the 
materials level and the component and device level. These details are 
not covered in this paper.

a. artificial neuron considerations
Synapse transmitters and dendrite receptors interconnections at the 
circuit level can be created using a two-dimensional (2‑D) crossbar. 
This may not be the most efficient, but it can create a robust intercon-
nection fabric. Axon connections can be accomplished using nanow-
ires, but only within the 2‑D organization made available in chip 
electronics. Since sensor and motor function interfaces are more spe-
cialized interfaces for transmission, reception, and signaling, there 
will have to be separate circuit designs for each one. Memory can be 
accomplished using chip electronic circuit modules made of mem-
ristors, phase-change memory, valance-change memory, or RRAM 
devices. Neuron nucleus processing can be accomplished with CPU 
cores made available to a handful of neural circuits, an arithme-
tic logic unit, or a microcontroller circuit. Once a neural circuit is 
available, it is possible to make networks of neural circuits available 
(Christensen 2022).

b. biological neuron considerations
Neuroscience research has a basic understanding of what a neuron 
is and how it functions. It explores the various facets of neurons in 
humans and animals from various points of view. Various animal 
testing ranging from flies, cockroaches, mice, and zebrafish, have 
been reviewed in the literature (Kim 2018, Huang 2017, Ryu 2018, 
Mitani 2018. For example, Mitani et al., by inserting microprobes 
into a mouse’s brain, gained insight into the spiking nature of neu-
ron firing from specific condition tasks (Mitani 2018). The biological 
neuron receives information from the dendrites, processes the inputs 
in the cell nucleus (soma), transmits responses through the axons, 
and connects with other neurons through the synapses.

4. Microarchitecture
Now that materials, components, devices, and circuits are avail-
able, they can be brought together to form a low-level architecture, 
which will be called a microarchitecture. Within a localized func-
tion, a microarchitecture is generated to execute a specific activity. 
A microarchitecture has greater complexity than a circuit but is not 
a complete architecture for a specific activity. It forms an essential 
building block as the next step in forming a complete neural capabil-
ity. Microarchitectures form multilayer neural networks. Circuits are 
combined to form higher-level functional systems. In this process, 
multilayer neural networks are generated. The formation of neural 
sensing, cognition, motor function, and control microarchitectures 
are examples of functions that can be captured with this layer. For 
artificial neural network considerations, simple single-stage artificial 

neural networks are a focus of microarchitectures. Neurons function 
together to form a microarchitecture. For biological neural network 
considerations, biological microarchitectures would be the first 
step in cognitive development, where basic neuron connections are 
formed.

5. System architecture
System architectures form the next higher level of organization of 
function, interfaces, and interdependent operation of various mi-
croarchitectures. A system architecture can be considered a system 
of systems, or a system of microarchitectures that operate interde-
pendently. In neural systems, a system architecture is used for neural 
systems that perform a complete system function, like sensing, motor 
control, or a computing module category.

The integration of neural systems like neural sensing, cognition, 
motor function, and control are examples of what are aggregated 
as a systems-of-systems architecture in this layer. For artificial neu-
ral network considerations, multilayer neural networks are a focus 
of system architecture, where more complicated architectures are 
formed that have more capability. For biological neural network con-
siderations, rather than just single neurons connecting to other ones, 
with a system architecture, there are multiple layers of neurons con-
necting that are adapting in a manner that has a more specific focused 
function that can repeatably be called upon.

6. Algorithms
Algorithms can utilize system architectures to generate a close cou-
pling of “hardware” and “software.” They form approaches that are 
tied together and can then be made available as cyber-physical ap-
plication capabilities that will be discussed in the next section. Al-
gorithms tie one or more system architectures together with other 
resources, including the interdependence of multiple algorithms.

a. sensing
Algorithms are generated from architectures and circuits for each 
type of sense: (1) visual, (2) auditory, (3) taste, (4) olfactory, or (5) 
tactile detection of pressure and temperature.

b. motor response
Motor response aggregates tactile sensing, motor operation, prop-
er response replication, and control computing. All these elements 
work together to provide a tuned functional motor response.

c. learning
Learning takes training data fed into neural networks and tunes the 
response within its neurons to produce the desired result more ef-
fectively. Learning is closely coupled with spiking neural networks. 
Once the neural connections have been established and properly con-
ditioned, they can be activated in a tuned manner by future spiking 
events coming into the neural network.

d. computing
Computing requires processing, memory, and input and output con-
nections to be correctly in place. Spiking neural networks process 
computational requests, especially in the brain.

7. Applications
Applications combine major functional categories like cognition, 
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specific motor control operation, sensory data processing, data anal-
ysis, and information interpretation. Applications show a complete 
coupling realization of the “hardware” and the “software.” They 
form cyber-physical capabilities in which the neural system will op-
erate. A comprehensive vision system is an example where location, 
color, and intensity data are received into the sensors, information 
is transported to the brain, a neural network performs signal inter-
pretation, a neural network performs object detection, and a neural 
network generates a computational response.

Applications can vary between biological system drivers and artifi-
cial neuromorphic system drivers. Biological system drivers capture 
the functionality in human and animal brain and nervous system ac-
tivity. Neuroscience is actively exploring this front. Artificial sys-
tem drivers seek bounded capability targeting areas like autonomous 
vehicles, robotics, embedded systems, perception engineering, and 
image-processing computational engines. Applications are based on 
integration or augmentation with human sensing methods.

Considering the biological neuron and neural network linkage of full 
stack layers, Fig. 12 shows the use case relationships between the 
layers, and Fig. 13 shows the types of activities and linkages between 
the layers. Many interdependent elements must function together to 
accomplish the desired computing and processing goals. Although 
many details are presented, it is still notional, trying to capture how 
a use case scenario for critical applications connects to all the lower 
levels in the full compute state.

8. Human brain operation layer above all other neural net-
works

An additional layer is proposed to account for the human brain’s 
unique characteristics adequately. This attempts to account for hu-
man beings made in the image of God and the fact that man has a 
body and soul that intersect in the physical world but includes a tran-
scendent element that extends beyond the realm of the spirit.

It is essential to consider how mankind transcends the mental capa-
bility of any other created organism. Being made in God’s image, 
human brain function must consider the spiritual dimension. Neu-
rons and neural network descriptions do not adequately cover this 
dimension. Schaeffer notes that just realizing a neural network does 
not mean that learning will occur all on its own (Schaeffer 2022). 
No human-level emergent properties are manifested by just build-
ing neural network hardware. Schaeffer may be giving evidence for 
brain activity that engages with non-physical input. Humans must be 
animated with a spirit to be alive in the sense that God intended for 
humanity.

Leveraging theological knowledge, conceiving abductive arguments 
that capture how human consciousness is more than neural networks 
is straightforward. Although not explained in current neuroscience 
research, knowing that man is created in the image of God, there 
must be interfaces such as (1) between the human brain biology and 
the soul (along with the soul to spirit if considered separate), and (2) 
between the spirit and God. This is a possible extrapolation for what 
Schaeffer is pointing out when he argues that there is no free lunch. 
Creating elaborate neural networks is not enough to capture what is 
required to capture the type of learning that can be done in the human 
brain. Only neural networks with external interfacing capabilities al-
lowing for abstract thinking can capture the full design of human 
consciousness. Fig. 14 shows a use-case scenario for the Imago Dei 
layer that must be included.

C. Neuron models

By capturing in architectural models of neuron function, it creates 
the first of two parts that are necessary to capture brain function from 
a top-level point of view. A great deal of engineering forethought 
has gone into its elegant and efficient operation and design. Mapping 
this information enables answering the first part of our third research 
question, what observations about human brain function can be made 
from the neuron and neural network architecture models?

This section explores the nature of the biological neuron and charac-
terizes its functional components using a model-based systems engi-
neering tool that utilizes the SysML.

1. What is a neuron?

A neuron is a specialized cell that receives, processes, and transmits 
nerve impulses. In a learning mode, it develops connections with 
other neurons to collaborate in computation efforts as needed (Da-
vies 2006).

From a computing point of view, a neuron can be considered a com-
putational device that consists of a processing unit, memory, and in-
put and output devices. In contrast to a centralized Von Neumann 
computing architecture with separate processing, memory, and input 
and out modules, each neuron is a self-contained computing agent 
that can be networked with other neurons to form networks. How 
a neuron implements each of the three Von Neumann architecture 
elements is explained next to clarify what is meant by comparing an 
individual neuron with a computational element. Stallings is used 
as an in-depth reference for electronic computer organization and 
architecture that explores the implementation and refinements that 
have taken place over many decades (Stallings 2019).

First, neurons process and condition the information it receives. This 
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Figure 12.  Neuromorphic computing use case with full compute stack.
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processing level is lower than one would associate with a laptop’s 
central processing unit (CPU). However, looking at a CPU and its 
architecture, one can find a better level of processing comparison. A 
relatively recent innovation in processor implementation has multi-
ple processing cores. Thus, with multiple cores, a CPU shares duties 
with multiple processing elements and assigns duties to each based 
on how it is engineered. A key workhorse element called the arith-
metic unit (ALU) is within a processor core. The ALU is a device 
that can be commanded and reconfigured to perform various com-

putational operations. This is done by software with a low-level pro-
gramming language called assembly language. A more appropriate 
analogy exists with an individual neuron at this more targeted ALU 
level. A network of neurons could be considered similar to a multi-
core processor. Thus, a single neuron can be considered an ALU with 
a handful of programmable and reconfigurable states. In one of these 
states, a single neuron is configured to do some basic function like 
sum three inputs, pass the signal if a condition is met, amplify the 
input, or modify the input in a particular fashion. Various paper ref-
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erences refer to neuroscience and neuromorphic computing research 
insights that correlate with the processing portion of a neural com-
puting architecture (Aljadeff 2016; Benjamin 2008; Bouvier 2019; 
Doberjeh 2016; Masqueler 2011; Rizzardi, 2019).

Second, there is memory in a neuron. Each neuron must maintain 
awareness of what it must do at a given moment. Through learning 
activities, a neuron can respond to a stimulus in the same way repeat-
edly. Networks of neurons require memory to execute multi-stage 
activities. Each action requires memory, and various paper referenc-
es explore aspects of neuroscience research concerning neuron and 
neural network memory (Huckleberry 2018; Faraut 2018).

Third, neurons have capabilities for inputs and outputs, as demon-
strated by studies examining and visualizing neural network struc-
tures. Computational load can be shared by having neurons work 
together in the appropriate input and output connections. The cen-
tral nervous system connects neurons to pass sensor information 
and control and monitor motor functions. Neural circuits have been 
experimentally traced. Several paper references explore neuron 
and neural network interconnections (Boorboor 2016; Böhm 2016; 
Huang 2017; Wang 2021).

Based on what is known about neurons to date, there are several 
characteristics that all neurons have. Neurons have dendrites, a cell 
body, and an axon, which according to this modeling approach, the 
synapse is included as a part that attaches to the axon. Neurons con-
nect with other neurons through synapses, which capture the specif-
ic interneuron signaling approaches. Fig. 15 shows these functional 
blocks.

2. Neuron classification

There are multiple ways one can categorize the classifications of 
neurons. One can consider the function and the structure. Fig. 16 
shows the grouping of two classification categories that are used in 
this  assessment. Since neurons are a key focus for this paper, this 
section provides useful characterization for this basic building block. 
Showcasing information via an architectural model perspective high-
lights taxonomy and implementation information in biological neu-
rons and what approaches in biomimicry have been done in artificial 
neurons. Neural network models are shown in Fig. 22. Spiking neu-

ral networks are implemented in biological neurons. Artificial neural 
network models are simplifying attempts to implement some of the 
features in biological spiking neural networks within the current lim-
itations of electronic chip part fabrication methods.

Functional and structural classifications are highlighted below. Func-
tional classifications capture the capabilities that are in the top-level 
biological neuron types by location in human beings. Structural clas-
sifications summarize the major biological neuron implementation 
types.

a. functional classification

Functional classification captures the significant types of neurons 
and their locations. The location of the neurons relates to their func-
tion. These functional locations are near the senses (sensory neu-
rons), inside the brain (interneurons), inside the central nervous sys-
tem (interneurons), and near muscles (motor neurons), as shown in 
Fig. 17. Neuroscience research seeks to refine this understanding, but 
from an architectural modeling point of view, these classifications 
are enough to provide a top-level understanding of sensing, motor 
function, computing, and learning. 

Neuron functional classifications highlight what neurons are intend-
ed to do and the architectural layout used to embrace its purpose. It 
does not fit directly one-to-one into a Von Neumann architecture of 
processor, memory, and input and output. Still, it does show all three 
of these Von Neumann features. There is not a clear distinction be-
tween hardware and software. Digital computing is not necessarily 
its base, but spikes are used to trigger action and pass information. 
A different architectural paradigm is utilized for this important con-
necting and computational building block. It is optimized to promote 
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interconnections, share computational loads, learn from past events, 
process sensory data, and do motor functions. All of these can be 
boiled down to this worker bee module. Describing the next layer 
of specification, neurons can be grouped into four functions, sensors 
neurons that interface with the senses, interneurons in the brain that 
focus on computation and learning, interneurons in the central ner-
vous system that focus on connections and signal processing of the 
information being transported, and motor neurons that focus on mo-
tor control. To accomplish many activities requires two or more of 
these functional neuron categories to work together. Note that none 
of these functions capture the unique qualities found in human beings 
or the special qualities that are part of humans’ Imago Dei charter.

b. structural classification

Structural classification (Fig. 18) captures the number of connections 
a type of neuron can have. The three classes are unipolar and pseu-
do unipolar, bipolar, and multipolar. A unipolar neuron has a single 
dendrite. A bipolar neuron has one dendrite and one axon. Multipolar 
neurons are typical in the nervous system and have long axons. This 
type of architectural classification approach groups neurons by their 
physiology. Neuroscience research is actively working to character-
ize neuron operation neurons when they can be exposed in their op-
erational mode. In contrast to functional descriptions, this structural 
taxonomy highlights the observable features accessible by physical 
observation.

Biological neuron structure takes advantage of the three-dimensional 
space where they exist to make connections. Each structural clas-
sification does the same basic function of transferring information 

through the organism, with each also doing signal conditioning or 
computational processing of the information. Unipolar neurons exist 
in invertebrates like insects but not in humans. They are part of gland 
and muscle function. Pseudo-unipolar neurons exist as sensory neu-
rons. Their primary function is to route sensor data back to the brain 
for processing. Bipolar neurons represent the classical structure of a 
neuron in one input node via the dendrite and one output node with 
the axon and synapses. Multipolar neurons are the most common 
type of neuron and are heavily populated in the central nervous sys-
tem. This diversity in structural options for the neuron shows how 
flexible its general capability can be utilized to serve many functions 
(Ludwig 2023).

3. Biological versus artificial neuron comparison

The discussion in the architecture framework section introduced the 
comparison of biological and artificial neurons, thinking within the 
application context of neural networks. Tab. 2 shows the similarities 
and differences between these two approaches.

•	 For the material layer, biological neurons leverage biomol-
ecules that form nucleotides. Their physical properties are 
altered by adding elements like phosphate groups. The mate-
rials of artificial neurons center around semiconductors. Phys-
ical properties can be altered by doping the semiconductor 
substrate in specific locations when building the correct order 
of materials via material deposition, one stage at a time.

•	 For the components and devices layer, there are two parts:
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Interconnections
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Interconnections

Transmit Synapse Signal 
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Table 2. Biological vs. Artificial Neuron Comparison
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	- For the components, biological neurons utilize proteins, 
which are an array of nucleotides configured in the proper 
order and folded into a functional formation to perform a 
specific component function. Artificial neurons leverage 
the device physical properties for building components.

	- For the devices, biological neurons construct things like 
signal receptors, transmitters, and storage devices like 
chemical ligand receptors with biomolecules and protein 
configurations. Artificial neurons rely significantly on 
several transistor types for generating devices.

•	 For biological neurons, the layout is based on a typical neu-
ron cell layout and configuration. There is no standardized 
approach for artificial neurons other than they will each be 
assembled as an integrated circuit chip with flexible capability 
within the package.

•	 For receive and transmit connections, a biological neuron uti-
lizes dendrites for receive connections, axons, and the syn-
aptic transmit elements for transmit connections. They take 
advantage of 3-D space to interconnect. Artificial neurons 
use crossbar interconnect devices for the receive and transmit 
connections.

•	 For transmit signal protocols, biological neurons use synap-
tic signaling transmitters, and for receivers, they use dendrite 
signal receptors. Artificial neurons use a digital signaling pro-
tocol, like TCP/IP, for a transmit and receive protocol.

•	 For memory, biological neurons enable memory by mecha-
nisms in the neuron cell body. Artificial neurons require col-
locating embedded local memory processing with neural cir-
cuits.

•	 For the CPU, the biological neuron has signal conditioning 
and processing within the nerve body and axons. As signals 
pass through, the characteristics are modified. Artificial neu-
rons require a microcontroller or a simple processing unit in 
each neuron module.

•	 For form factor, the biological neuron is contained in a single 
nerve cell that is modular and designed to work together with 
many other nerve cells. Artificial neurons place all the various 
neural circuitry into a neuromorphic chip that contains a dis-
crete number of neurons.

•	 For energy, biological neurons use external chemical energy 
only when the neuron is activated to participate in a computa-
tional function. Artificial neurons utilize electrical energy, of-
ten supplied via a continuous power stream to all the neurons 
in a neuromorphic chip.

a. biological neuron realization
When looking at the neuron from various points of view, one can 
see the complementary elements that must work together. There are 
a variety of biological elements that must be in place to generate 
a functional biological neuron. With many neuron classifications, a 
different emphasis is seen from one neuron type to another.

b. electronics neuron realization
Leveraging what has been done in chip electronics, various electron-

ic neuron elements must be generated to have a functional artificial 
neuron. Computer architectures have adapted and changed as new 
ways to improve performance have been discovered. There are sev-
eral critical artificial neuron differences. With a unique architecture, 
there are places where it needs to be clarified how to make systems 
more biologically similar without completely changing the way ar-
chitectures are devised.

4. Neuron molecular biological composition

This section will explore the composition of biological neurons and 
the primary biomolecules utilized. Unfortunately, much research is 
still required to clarify the molecular biological composition of neu-
rons further. Active research is exploring this composition.

Exploring the molecular architecture of neurons provides insight into 
the physics of materials and phenomenology utilized to implement 
neuron capabilities. The physical layer of biological neurons differs 
entirely from artificial neurons implemented in chip electronics. Ex-
amining from an engineering perspective how biological neurons are 
constructed at the lowest level may suggest new approaches for elec-
tronic biomimicry.

DNA holds the building instructions for biological components like 
proteins. Nucleotides are the basic building blocks that DNA is made 
from. These nucleotides are organic molecules consisting of a nucle-
oside (a nucleobase and five-carbon sugar) and a phosphate group 
that forms the structural parts (nucleic acid polymers) of DNA and 
ribonucleic acid  (RNA). The four nucleotides utilized in DNA are 
adenine (A), cytosine (C), thymine (T), and guanine (G). They are 
the fundamental building block molecules used in biological life. 
RNA uses uracil (U) rather than thymine (T). Segments of the DNA 
code for an organism are transcribed to RNA strands and transferred 
to building centers (ribosomes) to manufacture proteins. Nucleotides 
form triplets called codons, and specific codons correspond to ami-
no acids as laid out in the standard codon table. Each of these bio-
chemical layers is part of the physical layer that impacts the physical 
characteristics of the biological component. This process forms neu-
ron componentry and other biological microsystems and systems. 
Neuron components are composed of specific proteins optimized for 
their neuron function.

Unfortunately, at the time of this paper’s development, a complete 
protein characterization of any specific neuron type is incomplete. 
According to the human protein atlas, the following proteins are 
characterized parts of the human neuron, as listed below. It is a lim-
ited list, and the complete molecular biological layout of the human 
brain, or portions of the brain, is still being determined. However, 
there are genes from the various parts of the neuron taken from hu-
man and animal scans in representative brain areas (Sjöstedt 2020).

•	 Neuronal dendrite – CAMK2B, ARHGEF33

•	 Neuronal soma (cell body) – RBFOX3, ELAVL3

•	 Neuronal nucleus – ZNF3, CBFA2T2

•	 Neuronal axon – SLC6A4, SPTBN4

•	 Neuronal synapse – SYNJ2BP, SYP

Neuromorphic computing approaches have sought to mimic brain 
function at higher levels of abstraction.
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Biological life has a great deal of interdependence between the layers 
of the biological system in an organism. The architectural framework 
section suggests that only parts of these interdependencies have been 
characterized.

5. How many types of neurons exist?

Research is still actively exploring this challenging question to quan-
tify the result. Studies indicate there are many neuron classes, each 
optimized slightly differently for different purposes (Matani 2018; 
Yuste 2015). Within the brain, there could be thousands of neuron 
types. Exploring neuron categories is a logical next step to bound the 
number of neuron types that need to be explored and learn how to 
consider neuron function better. This paper generally characterizes 
neurons, and it shows how they feed into an interneuron network 
from a top-level perspective.

In the brain are sensory neurons, interneurons (processing neurons), 
interneurons interfacing with the central nervous system (connecting 
neurons with some processing capability), and motor neurons that 
control movement.

6. Methylation adaptation and signaling responses

DNA methylation is a form of adaption that also results in signaling 
response changes. Sensitivity or on-off switching of gene function is 
accomplished. Epigenetic memory keeps this setting until some oth-
er influence changes it. Methylation occurs by attaching a phosphate 
group between a cytosine and guanine pair, forming a CpG site. De-
methylation occurs through the removal of the phosphate group from 
this  site. Other types of methylation help cellular processes adapt 
to change. Research has shown that epigenetic modifications result 
in stable patterns in the brain that can be transcribed into new cells. 
Methylation can occur in specific brain parts in response to various 
environmental and other inputs (Rutishauser 2021).

Methylation modification is not the type of memory that makes 
sense to consider as part of a neural network Von Neumann com-
puting architecture. Instead, methylation modifications would equate 
to a more global type of change rather than a frequently changing 
memory cell in a neuron. To give an analogy, methylation would 
be like updating a computer’s Basic Input-Output System (BIOS) or 
reprogramming a more straightforward Internet of Things (IoT) de-
vice program by reimaging the Programmable Read-Only Memory 
(PROM) memory. Thus, methylation changes (like BIOS or PROM 

changes) will persist and impact the control logic of the biological 
system operations.

7. Neuron synapse signaling
Several steps occur when information is sent from one neuron to an-
other. The axon prepares information for proper transmission to the 
synapses. Then the neurotransmitter takes this processed information 
and makes it ready to leave the synapse and transition the physical 
bond from the transmitting neuron to the receiving neuron. Next, the 
receiving neuron takes in the information, and the transmission is 
complete. Fig. 19 shows this neuron synapse signaling process.

Since sensory input is a comprehensive function done with a col-
lection of neurons, it is important to characterize the relationships 
between components that are part of this activity. Fig. 20 shows this 
sensory neuron activity process flow.

8. At what levels can neuron hardware implementation be 
done?

Various abstraction levels can be utilized to create a biomimicry 
implementation of brain neural networks. Typically, these do not 
consider the physical layer since biological circuitry fundamentally 
differs from semiconductor hardware.

With chip electronic circuit size approaching the molecular level, this 
could be revisited. Molecular biology with its various signaling paths 
and paradigms should be considered for biomimicry inspiration.

A spiking neural network  (SNN) is the biological neural network 
signaling approach. The network activates a subset of connected 
neurons, optimized to process a scenario based on previous learn-
ing when necessary to complete a computational task. Neurons are 
linked through learning mechanisms. Once learning activities are 
completed, the spiking neural network remembers the proper compu-
tational function and response, so it can recall it again when the same 
scenario occurs. Various learned connections in the brain’s spiking 
neural network computing fabric can be recalled when needed.

9. Human brain neuron models
Research has been done to comprehend how the human brain op-
erates. The brain contains nearly 100 billion neurons, each with 
the same flexible configuration. Not only is there a vast number of 
neurons, but there are 100 trillion synaptic interconnections. Neu-
rons have input connections from sensors, a cell body that receives 
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and processes those signals, and an output interconnection fabric 
that allows it to establish connections with other neurons. The in-
put connections from sensors are called dendrites. The cell body is 
where these signals are brought together and processed. The axon is 
where the output is sent. Neurons connect so one neuron can pass on 
processed information to one or more other neurons. Through bio-
mimicry, aspects of this architecture have been translated into neural 
networks. The most basic model is a perceptron, which combines 
multiple inputs and process results. Combining artificial neurons cre-
ates multilayer perceptions or an artificial neural network. A more 
accurate model of the human brain is to include the spiking signal 
nature of impulses that propagate through neural networks. Spike 
time-dependent plasticity is a key to understanding brain computa-
tion. As discussed in Section 5.11, many details are required to em-
ulate the processing and advantages of human brain function. Fram-
ing it as in the Von Neumann architecture, to create neuromorphic 
computing capability, three elements must be present in each neuron: 
(1) a processing capability, (3) memory, and (3) an interconnection 
neuron fabric that includes inputs, interconnections, and outputs.

D. Biological neural circuits and artificial neural networks 
models

Capturing the architectural models of neuron circuits and neural net-
works creates the second of two parts that are necessary to capture 
brain function from a top-level point of view. A great deal of engi-
neering forethought has gone into the ability of neurons to network 
together and share the computational load. This feature allows for 
learning. Mapping this information enables answering the second 
part of our third research question, what observations about human 
brain function can be made from the neuron and neural network ar-
chitecture models?

This section will summarize and contrast characteristics and mod-
els for biological neural circuits (or biological neural networks) and 
artificial neural networks. It leverages the information from the ar-

chitecture framework development, where biological and artificial 
implementations for each layer of the full compute stack model were 
discussed.

A biological neural circuit is a collection of neurons interconnected 
by synapses that carry out a function when activated. When these 
networks are elaborated, they form large-scale brain networks. The 
literature review looked at a variety of research result findings. Sen-
sor nerves drive motor function (Kim 2018), brain circuits (Huang 
2017), spinal circuits (Böhm 2016), neuron activity mapping (Wan-
ner 2018), vision systems (Ryu 2018), neocortex neuron types 
(Matani 2018), memory neurons (Huckleberry 2018), and human 
neuron and memory (Faraut 2018). These are fascinating topics 
and have made noteworthy advances in neural circuit understand-
ing. However, they still point out the difficulty characterizing these 
neural circuit systems in their operational state. Evasive tests often 
lead to animal or human mortality and do not allow for monitoring 
in a normal operating state. Pulling these factors together into an 
architectural model is difficult since the research topics are specific 
and limited by the creative ways researchers have figured out how to 
access the biological systems of certain organisms when the brain, 
central nervous system, senses, or motor subsystems can partially 
be observed. Some aspects of artificial neural network developments 
can provide some useful insight.

An artificial neural network is an approach to computation that seeks 
to embrace at least some of the features of its biological counterpart. 
Pavone and Plebe argue that it is unnecessary to stick with brain 
analogies to succeed in neuromorphic computing. As a result, many 
approaches are indeed possible, but they will not perform in the same 
manner as a brain (Pavone 2021). The more an artificial neural net-
work diverges from its biological equivalent, the more engineering 
modification will result in different performance outcomes. This will 
impact how well artificial alternative designs will help clarify brain 
function.
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There is a relationship between neural networks and neuromorphic 
computing. The term neuromorphic has developed over time. Initial-
ly, it dealt with emulating the biophysics of neurons and synapses. 
More recently, it has grown to include descriptions of spike-based 
processing systems and neural architectures that implement neu-
ron and synapse circuits. Neuromorphic computing definitions vary 
from a high-fidelity mimicking of neuroscience principles to a high-
er-level, loosely brain-inspired set of design principles. There is also 
a fruitful interchange between the more accurate neuron model ap-
proach of SNNs and the lower fidelity of the replication approach of 
artificial neural networks (ANN) (Christensen 2022). This paper will 
not explore neuromorphic computing. A future article will discuss 
neuromorphic computing and consider how a brain computing ar-
chitecture can help improve computational capability, but it is briefly 
commented on here. Although significant differences exist in neuro-
morphic computing systems’ implementation, they all utilize a Von 
Neumann computing construct. Trying to quantize a fixed number 
of neurons into a chip is not how a biological brain operates. Brain 
interconnects take place in a three-dimensional space. Electronics 
cannot do this. Crossbar interconnects are inefficient and do match 
the dynamic, programmable, and low-power manner synapses con-
nect. Neuron computational engines are embedded in a fundamen-
tally different way as compared to electronics. Simple, streamlined, 
and optimized neuron computational engines are very different from 
the CPUs found in electronic computing platforms. (Shrestha 2022).

1. Neuron network models

Since most neurons are deep within the brain, it is tough to access 
and experimentally uncover the functions of neurons. Fig. 21 shows 
the two types of neural network models considered. An artificial neu-
ral network is much easier to implement. Depending on the model 
used, it can range from modest to average realization of what occurs 
in a spiking neural network.

Fig. 22 shows a high-level process flow of the Loihi neural network 
microarchitecture. This represents its level of adoption of biological 
neural network concepts. The Loihi and Loihi 2 chips have sought to 

implement a spiking neural network in chip electronics that can be 
used with conventional electronics. Biomimicry is done at a func-
tional level because it is not conceived in biological materials (Da-
vies 2018). 

2. Artificial neural networks

Artificial neural networks aim to reflect the behavior of the human 
brain and provide a basis for creating brain-inspired computing mod-
els. A neural network structure aims to create computer architectures 
that recognize patterns and solve problems. If it is done well, the 
resulting capability should approach a focused cognitive function 
seen in the human brain. Thus, applied neuroscience can be viewed 
as intersecting with the overlapping fields of artificial intelligence, 
machine learning, and deep learning.

Schaeffer et al. argue that there is no free lunch for deep learning in 
neuroscience. Deep learning is part of the machine learning methods 
family that deals with representation learning. Researchers have been 
using neural networks to model and mimic the function of brain grid 
cells. Grid cells are a type of neuron that is crucial to the brain’s nav-
igation system. They help individuals know where they are in a 3-D 
position and move within the confines of that domain. Feeding train-
ing information into a deep learning neural network is not enough 
to produce the brain function that results in successful navigation 
with grid cells. Only when applying specific constraints that are not 
part of the neural network can successful navigation take place. As 
a result, it takes more than just neural network hardware to generate 
an operational neural network. The authors’ main observation is that 
deep learning models cannot reproduce grid cells capability simply 
from task training (Schaeffer 2022).

When looking to design a system, how should a neural network be 
architected? A classical Von Neumann architecture must have a pro-
cessing unit, memory, and input and output capabilities. A neural 
network is only composed of neurons, so each designed neuron must 
have processing, memory, and input and output functions. These are 
straightforward concepts, but at what biomimicry level should a de-
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sign be implemented?

Electronics have specific functions, but technologically sophisticated 
device physics are harnessed. There is interdependence to a degree 
where external power, temperature control, and proper placement of 
parts within a larger design must be done.

3. Comparison between biological and artificial neural networks

Table 3 below highlights the differences between biological and ar-
tificial neural network systems. (1) Power for biological neural net-
works is only required when a computation activates a neuron. This 
results in significant power savings. Electronics in chips typically 
apply power constantly to electronic devices. Neuromorphic com-
puting architectures are trying to move away from that paradigm. (2) 
Biological neural networks use chemical energy when computing is 
required. Electronics require electrical energy, which cannot easily 
be stored in an artificial neuron and activated when necessary. (3) 
Biological neural networks use a complete three-dimensional (3D) 
architecture such that neurons can connect with other neurons any-
where in a three-dimensional space. This eases access to a more sig-
nificant number of neurons. Electronics in chips typically only can 
connect in a two-dimensional (2D) planar manner. With the stacking 
of chips within a part package, there is the possibility for 2.5 D stack-
ing access. Still, this is limited in comparison to biological systems. 
(4) Input and output connections are grown in biological neurons, 
with the axons having synaptic connections reaching out as far as 
necessary to access more neurons. Artificial neurons use switching 
fabrics, like a 2D crossbar, that connect any input to any output in a 
matrix fashion. This gives lots of flexibility but requires lots of hard-
ware. (5) Memory and computing (central processing unit or CPU) 
resources are embedded in the biological neurons. The number of 
resources per neuron is tailored for its operation being distributed 
across elements. To mimic this behavior, artificial neural networks 
must embed memory modules and microcontrollers in each neuron 
or neuron cluster. The device physics differs between biological and 
artificial neurons. (6) Biological neural networks utilize molecular 

signaling mechanisms, including phosphorylation. Artificial neural 
networks utilize semiconductor properties where control inputs can 
modify signals. (7) Regarding parts architectures, biological neural 
networks are primarily composed of neurons, with various classifica-
tion types used. Artificial neural networks use a variety of integrated 
circuit parts that are aggregated together. (8) In terms of learning, bi-
ological neural networks recruit other neurons for groups that can be 
recalled for duty to accomplish a learned task across the distributed 
network. Artificial neural networks must allocate hardware and soft-
ware resources to accomplish the desired function. (9) Connecting 
sensors to computational resources is done slightly differently. For 
biological neural networks, the whole architecture consists of neu-
rons, starting with neurons adapted to connect to the sensors, con-
nected to transport neurons in the central nervous system. These are 
then connected to computational neurons in a neural network gener-
ated to interpret sensor data. For artificial neural networks, read-out 
electronics take sensor data and route it via an interconnect matrix to 
a computational neural network preprogrammed to process the spe-
cific sensor data. (10) For biological neural networks, brain compu-
tational network actuator commands are relayed via central nervous 
system neurons to the actuator neurons connected to the muscle. 
Response data is sent back to the neural network forming a closed-
loop system. For artificial neural networks, the neural network feeds 
interconnect resources that connect to actuators controlling motors. 
Sensors send feedback signals back to the neural network.

IV. DISCUSSION

A. Summary

This paper explored the human brain function and architecture. It 
introduced a way of comparing biological and artificial systems. This 
study examined the neuron and neural network architectures seeking 
to observe their construction, operation, optimization, and adaptabil-
ity. Regarding methodology, the study sought to look at the neuron 
and neural network systems from an engineering perspective and 
leverage systems engineering tools as part of the assessment. From 

ACT Neural Net Microarchitecture
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Figure 22.  Neural network microarchitecture.
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the literature review, it is clear extensive relevant work is being done 
in neuroscience, machine learning, and neuromorphic computing. 
Various publications describe how complex biological neurons and 
neural networks are and how challenging it is to emulate them fully. 

To give a context for how human brain function should be consid-
ered, a creation model is developed, showing the significant thrusts 
captured on each day and how everything fashioned by the hand of 
God led to His crowning creative work by forming man in the image 
of God. 

The architecture framework section examined and contrasted biolog-
ical and artificial neurons and neural networks using a seven-layer 
full compute stack model that can characterize computing systems. 
The neuron functional modeling section made observations about the 
nature of the neuron and how neuron functions can be characterized 
from various points of view. In terms of neuromorphic computing, 
artificial neural networks and neuromorphic computing systems are 
being organized and experimented with, with promising results in 
computing capability but challenging issues regarding the resourc-
es required to make them function as compared to their biological 
counterparts. Systems engineering evaluation of the neuron and neu-
romorphic computing are included. This paper focused on charac-
terizing both and did not create a complete Systems Modeling Lan-
guage (SysML) model. Instead, block definition diagrams, package 
diagrams, use case diagrams, and activity diagrams were utilized to 
help frame the systems engineering discussion. 

As noted by Schaeffer, there is no free lunch when creating neural 
networks. Having a neural network configured does not equate to 
a functional computing capability. There are external resources re-
quired to make it work. When considering the status of humankind 

created in the image of God, this suggests evidence that humans re-
quire more than biological neural networks to think (Schaeffer 2022). 
Creating a human brain in silicon is not possible. (Plebe 2015). There 
are plans for further exploration of the topics in this area.

B. Answers to research questions

In this subsection, the various elements discussed in this paper are 
drawn together to answer the three research questions proposed in 
the introduction.

1. Creation model and human mission insights

How does a Creation Model provide additional insight and con-
text for the implementation and mission of human beings? 

Since God created the heavens and the Earth, God the engineer had a 
master plan for His implementation. With human beings being made 
last as the crowning part of creation, there are many ways and many 
levels in which they engage with these resources. The creation model 
translates the creation narrative into an engineering format that is 
much easier to use for design evaluation. With this model and what 
is developed by the full compute stack model discussed next, there 
can be a comparison of some aspects of human beings in terms of the 
environment in which they were created to prosper within. Human 
beings indeed engage with the physical and biological world like 
other animals. Still, the capabilities they possess go far beyond basic 
living functions. With the resources available, individuals can create, 
design, and engineer many things that can improve their ability to 
fulfill their Imago Dei charter. Human beings transcend beyond just 
existing. They can leverage the physical and biological order laid out 
in creation to think in some ways as God does. They can create from 
the resources God has provided. 

2. Full compute stack model modifications for human brain 
function

What modifications to the full compute stack model are required 
to capture unique human brain function? 

Without modifications, our Imago Dei faculties cannot be captured 
with a full compute stack model. Human brain function above all 
other shows a clear differentiation from animals with the human spir-
it and the manifold engagements that occur with the Holy Spirit. The 
full compute stack model targets general computational purposes and 
has been demonstrated to capture capability layers in neuromorphic 
computing. It does not allow for distinguishing the difference be-
tween an animal and human beings with the additional insight given 
in Scripture about human nature. It might be possible to pursue a 
generative artificial intelligence-inspired approach that assumes ev-
ery part of human faculties can be mapped exclusively into a phys-
icalist implementation understanding of functions. This contradicts 
the level of agencies that is captured in the Imago Dei charter human-
ity has been given. Thus, there must be modifications to the model to 
allow for higher-level faculty that includes abstract thinking and the 
human spirit that animates the human body.

3. Neuron and neural network architectural modeling

What observations about human brain function can be made 
from neuron and neural network architectural models? 

Much work has been done in both neuroscience and neuromorphic 

Table 3. Biological vs. Artificial Neural Network Capability Comparison

CAPABILITY BIOLOGICAL ARTIFICIAL

Power Power on Demand Power Continuously

Energy Chemical Electrical

Architecture 3D in Brain 2D (or 2.5D Stacking) in 
Chips

Input & Output Grow Axonal 
Connections

2D Crossbar 
Interconnection

Memory Embedded in Neurons Von Neumann Modules

CPU Embedded in Neurons Von Neumann Modules

Device Physics Signaling, 
Phosphorylation Semiconductor Properties

Part Arch. Homogenous Neurons Heterogeneous IC Parts

Learning Recruit Neurons Utilize More Modules

Sensing Sensor to Sensor Neurons 
to Brain

Sensor to Circuits to 
Neural Net

Motor Control Brain to Motor Neurons 
to Muscle

Neural Net to Circuits to 
Actuator
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computing. With so many basic features in neuroscience that still are 
unknown, capturing architecture models can provide a framework 
for how to view this complex information. Since the biological neu-
ron implementation details are complex and not wholly character-
ized, architectural modeling offers a different approach to identifying 
design methods and interdependencies. Neurons are a fundamental 
building block in every part of human neural systems. In general, 
they accomplish the same function using a common basic architec-
ture. There is specialized tuned functionality when moving towards 
more individualized neuron types as one compares capabilities like 
sensing, motor control, computing, and learning. Below are the in-
sights that can be drawn from functional and structural classifica-
tions.

a. Functional classification

One way of showing functional neuron classifications is to bin neu-
ron types into sensor, interneuron, and motor neurons. Interneurons 
have two sub-classifications, one in the central nervous system and 
the other in the brain. Even at this high-level view, there is a tree 
structure where all neurons have a variety of common characteris-
tics. Still, then there are additional specialized features that are uti-
lized for their specific mission. Sensor neurons cooperatively work 
with the sensors. Motor neurons are tailored to work with muscles 
and ensure proper control. Interneurons focus on relaying informa-
tion and doing a portion of the computational load. The central ner-
vous system is primarily a transport mechanism, while brain neurons 
take relayed information and perform computations and learning 
functions.

b. Structural classification

Structural neuron classifications focus on physical implementation 
differences and how they vary from one neuron class to another. Ma-
jor structural differences group neurons into unipolar, bipolar, and 
multipolar. A unipolar neuron has a single dendrite. A bipolar neuron 
has one dendrite and one axon, which is useful for direct and indirect 
cell pathways like in the eyes. Multipolar neurons are typical in the 
nervous system and have long axons. This type of architectural clas-
sification approach groups neurons by their physiology.

c. Thoughts on the divergence of biological versus artificial 
neural system goals

Neurons are very resource efficient in accomplishing their purposes. 
Neuromorphic computing implementation of artificial neuron finds 
it very difficult to accomplish. Some features do not translate well 
when electronic neuron-like materials instead of biological neuron 
materials are used. In contrast to what Pavone and Plebe suggest by 
proposing that neuromorphic computing systems should minimize 
trying to achieve their goals by mimicking biological brain architec-
tures (Pavone and Plebe 2019), it is impossible to separate the reason 
why God created the human brain from its implementation. Under-
standing its creation context makes a huge difference. As the Cre-
ation Model shows, all creation in its original context works together 
harmoniously with key performance goals in mind. God wanted to 
engage with humanity. God did not want a man to be alone (Gen 
2:18). God wanted man to fulfill his Imago Dei calling (Gen 1:28). 
God did not intend as a central focus for man to become augmented 
with technology just to increase personal capability. Instead, it is all 

about relationships and drawing all aspects of creation back to great-
er intimacy with God.

4. Drawing the observations of the three research questions 
together

Human beings were designed with mental capabilities that exceeded 
all other animals. They were created to live in harmony within the 
creation fashioned for them on Earth. Utilizing the full compute stack 
model, the capabilities of humans go beyond what its layers can cap-
ture. With the focus on neurons and neural networks in this paper, it 
is possible to consider how the Imago Dei translates to this level with 
an architectural model. Much about neurons and neural networks 
still needs to be uncovered. Creating an architectural context along 
with what is already determined with neuroscience research and the 
challenges that have occurred with neuromorphic computing trying 
to implement comparable systems gives insight into how much ca-
pability is packed into the human brain. It is asserted that generative 
artificial intelligence will never match what humans can do. There 
are missing architectural layers that cannot be included in artificial 
systems. Human responses can be codified, and aspects of learning 
can be captured in machine learning approaches. Still, this does not 
mean that artificial intelligence systems will have the breath of life 
from God given to them (Gen 2:7).

V. CONCLUSIONS 
Above all other parts of creation, the human brain alone can think 
and process abstract ideas. Humankind should be the last part of cre-
ation since there are interdependencies between man and every other 
aspect of God’s handiwork. More importantly, humankind is called 
to rule and reign over creation and held accountable to be a good 
steward. Individuals report directly to God and carry the bidding of 
our sovereign God to the ends of the Earth.

Neurons are a fundamental building block for the various parts of 
computational tasks. Biological neurons are a complex and adaptable 
building block used in many human and animal physiology places. 
Several categories and types within each category exist. This is a 
very active area within neuroscience. Artificial neurons and neural 
networks are not able to meet the capability and the modest resources 
necessary that are found in their biological counterparts.

Neural networks are collections of neurons that form cooperative 
structures that allow them to operate together through learning and 
optimization from repetitive tasks. Exploring neural networks, and 
computation in general, in terms of full compute stack layers is a 
helpful way to capture the levels of functional capability that must 
cooperate to bring together a working computational capability. Spe-
cific engineering choices are seen in the implementations of these 
layers. Research continues to provide new insight into how these 
functions work.

Although this paper integrates various ideas for framing an under-
standing of neurons and neural networks, the work requires more 
development because there is a limited understanding of neuron and 
neural network biology, and artificial implementations are rapidly 
changing. Continuing to track the developments in neuroscience, 
machine learning, and neuromorphic computing will be required. 
Follow-up survey papers and focused research question-centered pa-
pers will continue to be developed.
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From the biblical creation model, there is evident interdependence 
between each creation layer. As the temporal plan of creation un-
folds, the later, more developed layers depend on the infrastructure 
from the earlier temporal steps. Once all creation is functional, each 
aspect has a tightly coupled and finely tuned partnership. Humankind 
is part of this system, but he also is unique in his ability to understand 
and explore its operational makeup. Similarly, the human brain is the 
most advanced brain that can be considered with the architectural 
model layers to see a similar interdependence among all the layers. 
This layered engineering design pattern with interdependence and 
fine-tuning is seen in many aspects of biological life. An additional 
layer is proposed to account for the human brain’s unique character-
istics adequately. From an architectural point of view, this accounts 
for human beings made in the image of God and the fact that man 
has a body and soul that intersect in the physical world but includes 
a transcendent element that extends beyond the realm of the spirit. 

Using the Creation Model, the assessment of the full compute stack, 
and the architectural models of neurons and neural networks show a 
shortfall between human brain function and what artificial neuromor-
phic computing systems can achieve. Using the context seen with the 
Creation Model, the purposes of creation become clearer from an 
engineering sense. Creation is about relationships and drawing all 
aspects of creation into greater intimacy with God. This is far differ-
ent from simply increasing neuromorphic computational capability.
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APPENDIX

This literature review appendix summarizes most of the wide array 
of peer-reviewed information covered in this article.

A. Neuron models, classifications, and architecture

1. Molecular biology of the neuron

Davies and Morris, in their textbook Molecular Biology of the Neu-
ron, examine the molecular biology of the neuron. It is a collection of 
the findings of subject matter experts who are knowledgeable about 
different parts of the neuron. They correlate function with molecular 
biology by analyzing neurons in action. Neurons are arguably the 
most complex cell in the body. Therefore, exploring their molecular 
composition is also challenging (Davies 2006). 

2. Models of neurons

Bielecki’s textbook, Models of Neurons and Perceptrons, examines 
various models of neurons and the artificial replication of neurons, 
sometimes called perceptrons. The central focus of the textbook is 
exploring artificial neural networks and how to mimic the parts of a 
neuron in electronics (Bielecki 2019). 

3. Mapping proteins to parts of the brain

Sjöstedt et al. published their highlights of the human protein atlas 
project in Sweden. Their goal is to map function to portions of the 
brain in ways that have not been utilized previously. They combine 
data from transcriptomics, single-cell genomics, in situ hybridiza-
tion, and antibody-based protein profiling. As a result, they have 
generated detailed multilevel genome-wide views of protein-coding 
genes in the brains of mammals (Sjöstedt 2020). 

4. Retinal neuron classification

Shekhar et al. published their findings that gene expression patterns 
could be used to characterize and classify neuronal types. The au-
thors proposed a systematic methodology for achieving a compre-

hensive molecular classification of neurons. It can identify novel 
neuronal types and it uncovers transcriptional differences that dis-
tinguish types within a class. They proposed a taxonomy based on 
molecular features (Shekhar 2016). 

5. Structural and functional units of the neuron

Yuste published his findings that show how the neuron is a structur-
al and functional unit of the nervous system. Yuste traces over 100 
years the historical development of the neuron doctrine and neural 
network models. Groups of neurons operate as functional units in 
neural circuits. Neural network models may reveal the nature of neu-
ronal code and neuroscience, like the physiological basis of learning, 
perception, motor planning, ideation, and mental states (Yuste 2015). 

6. Relationship between neuron models and brain neurons

Pavone and Plebe published their results showing the relationship 
between neuron models and actual brain neurons. There are weak-
nesses in the analogy between the brain and a computer. Performance 
metrics are not enough to characterize similarities or differences. 
There are differences between deep learning and the human brain. 
Deep learning networks have developed and demonstrated utility on 
their own. They argue that it is unnecessary to stick with brain anal-
ogies to succeed in neuromorphic computing. Many approaches are 
indeed possible, but they will not perform in the same manner as a 
brain. This is what they argue. “The weakening of the analogy be-
tween the brain and the computer, which could be considered a value 
in itself in the design of the algorithmic aspects of neural networks, 
changes things. With the abandonment of the analogy with the brain 
at all costs in the design of the algorithms underlying a cognitive 
architecture, we have returned to an opportunistic attitude, whereby 
the effectiveness of a cognitive model is measured again only based 
on its performance: if it fulfills the task for which it was designed, 
then it is a good application model, otherwise not.” (Pavone 2012). 

7. Neuron gene expression

Pfeffer and Beltramo published their results on neuron gene expres-
sion patterns that produce categorization schemes. Current neuron 
classification is based on anatomical, molecular, and functional prop-
erties. Anatomical and functional properties depend on the circuits in 
the nervous system they are part of (Pfeffer 2017).

8. Method for recording single neuron activity

Kodandaramaiah et al. published the details on their new method 
to record single neuron activity, offering the ability to track spiking 
activity. Experiments were done with live rats with probes attached 
to their brains via an innovative robotic connection technique. The 
successful demonstration of an automation method on mice may lead 
to approval to do similar tests on humans in the future (Kodandara-
maiah 2018).

9. Visualization of neuronal structures from human brain test-
ing

Boorboor et al. published a workflow method they developed that 
visualizes neuronal structure in wide-field microscopy images of 
brain samples. Individual neurons were seen in wide-field micros-
copy images. The authors created a process to extract features with 
their workflow process and then visualize the results with a Unity 
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three-dimensional  (3-D) data visualization. Three visualization 
modes are possible: (1) bounded (select in-focus features) from out 
of focus and background noise view, (2) structural view, and (3) clas-
sification view (Boorboor 2016). 

10. Neuronal activity mapper

Kim, Perova, and Mirrione published an automated neuronal activ-
ity mapper they developed to help search for signatures of stress re-
sponses in the entire mouse brain. Their findings indicated distinct 
brain activity markings that correlate with adaptive and maladaptive 
behavioral responses to stress, providing a framework for further 
studies (Kim 2016). 

11. Proposed architecture of human memory

Rutishauser et al. published their proposed architecture of human 
memory. They focused on the medial temporal lobe recordings, in-
cluding the hippocampus, where it shows two classes of cells: (1) 
those encoding highly selective and invariant representations of 
abstract concepts, and (2) memory-selective cells whose activity is 
related to familiarity and episodic retrieval. Visually selective cells 
can remain persistently active for several seconds, which revealed a 
cellular substrate for analyzing human memory (Rutishauser 2021).  

12. Methylation of neurons

Rizzardi et al. published several ways that neuron methylation takes 
place. Their findings showed how methylated epigenetic modifica-
tions correlate to specific expressions of heritable traits. They ex-
plored DNA methylation that results in stable transcriptional patterns 
in four brain regions, the anterior cingulate gyrus, the hippocampus, 
the prefrontal cortex, and the nucleus bens. (Rizzardi 2019). 

13. Limitations of artificial neural networks

Schaeffer et al. argued that there is no free lunch for deep learning in 
neuroscience. Deep learning is part of the machine learning methods 
family that deals with representation learning. Researchers have been 
using neural networks to model and mimic the function of brain grid 
cells. Grid cells are a type of neuron that is a crucial component in the 
brain’s navigation system. They help individuals know where they 
are in a three-dimensional position and move within the confines of 
that domain. Feeding training information into a deep learning neural 
network is not enough to produce the brain function that results in 
successful navigation with grid cells. Only when applying specific 
constraints not part of the neural network can successful navigation 
take place. As a result, it takes more than just neural network hard-
ware to generate an operational neural network. The authors’ main 
observation is that deep learning models cannot reproduce grid cells 
capability simply from task training (Schaeffer 2022). 

B. Neural circuits and response experiments

1. Organic electronic sensor nerve driving a motor function

Kim et al. published their experimental results of creating flexible 
organic electronics to mimic the functions of a sensory nerve that 
drives a motor function. The nerve collects pressure information from 
clusters of pressure sensors, converts the information into action po-
tentials, and integrates these inputs together. Actuation and pressure 
measurements were done with a cockroach leg. They utilized organ-
ic-inspired materials and circuits in their design (Kim 2018). 

2. Brain circuit findings from testing drosophila flies

Huang, Niesman, and Arasu published their findings on brain circuits 
and how neural circuits interconnect. The authors developed a meth-
od that reveals synaptic connections of neurons of interest. The ex-
periments were done with Drosophila flies. Experiments confirmed 
that by taking advantage of the molecular mechanism of a ligand (a 
molecular-level chemical bonding site of a cell), along with induced 
intramembrane proteolysis (a protein breakdown process), neuronal 
circuits could be traced (Huang 2017). 

3. Experimental results of spinal cord circuit testing

Bohm, Prendergast, and Djenoune published their experimental re-
sults exploring spinal cord circuits, focusing on cerebrospinal flu-
id-containing neurons that modulate locomotion directly onto loco-
motor central pattern generators. The cerebrospinal fluid-containing 
neurons form a mechanosensory organ that operates during locomo-
tion to modulate the central pattern generators. Zebrafish larvae were 
used for the experiments (Böhm 2016). 

4. Neuron activity mapping from zebrafish experiments

Wanner and Vishwanathan published their results on neuronal ac-
tivity mapping as neurons connect to synaptic connections. Their 
premise is that for a mechanistic understanding of brain neuronal 
circuits, a detailed description of information flow must be character-
ized. Neuron function must be linked to circuit structure. Since larval 
zebrafish are transparent, the necessary testing and experimentation 
could be done (Wanner 2018). 

5. Vision system and simulation response comparison

Ryu and Fried published their findings that compare the signals of a 
functional vision system in a mouse to those that are generated from 
electrical stimulation of the retina. The experiments investigated 
how different stimulation sites, and different stimulation conditions 
in the retina, shape the response of the mouse visual cortical neurons 
(Ryu 2018). 

6. Neuron types in the neocortex

Matani et al. published their results on the neuron subtypes in the 
neocortex, based on experimental research done with mice that had 
probes added to their brains to detect and process their responses. 
Their performance improved from conditioning tasks. Individual in-
hibitory neurons can be modulated in a subtype fashion, which high-
lights the versatility of neural circuits (Matani 2018). 

7. Neuron memory experimental results

Huckleberry et al. published their findings on adult-born neurons 
in the dentate gyrus, which is part of the temporal lobe portion of 
the brain in the hippocampal formation; it continues to produce new 
neurons throughout adulthood. The researchers explored how they 
continue to contribute to memory context, and they saw a relation-
ship between these neuron cells and fear conditioning. Neurons born 
in the adult dentate gyrus integrate into functional circuits and are 
believed to contribute to cognitive and emotional hippocampus func-
tions (Huckleberry 2018). 

8. Neuron activity and memory human trial results

Faraut, Carlson, and Sullivan published their experimental findings 
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from a 1,576-neuron dataset that was used to assess 42 human pa-
tients. The dataset with the patient responses helped map and char-
acterize neuron behavior during behavioral and memory activities. It 
gave new insights into memory tasks, including forming new memo-
ries, retrieving, and describing those memories (Faraut 2018). 

C. Spiking neural networks
1. Visual system neuron spiking model
Masquelier published the results of his research and phenomenolog-
ical spiking modeling of a cat’s early visual system, composed of 
the retina, neurons (lateral geniculate nucleus), and primary visual 
cortex (V1), evaluating relative spike time coding and spiking tim-
ing-dependent plasticity  (STDP) orientation factors. As a result of 
their experimental observations of the cat’s response to visual stim-
uli, they created a computational model. They used a virtual retina 
simulator and developed lateral geniculate nucleus and V1 models in 
MATLAB and C code (Masqueler 2011). 

2. Neuron sensor firing to the brain
Aljadeff et al. published their results on neuronal firing from the sen-
sor to the brain, seeking to better understand the neural activity. With 
the experimental data from rat experiments, the authors tried to inter-
pret spiking information by using four different models (spike-trig-
gered average [STA], spike-triggered covariance [STC]+STA, max-
imum noise entropy [MNE], and generalized linear model [GLM]) 
(Aljadeff 2016). 

3. Neuron algorithms and trades
Bouvier et al. published a survey and overview of the strategies uti-
lized by algorithms in hardware, along with the advantages and chal-
lenges (Bouvier 2019). 

4. Spiking neuron algorithms
Doboerjeh et al. published their findings on an algorithmic method 
to explore spiking neural networks for learning, classification, and 
comparative brain data analysis (Doberjeh 2016). 

5. Brain neural networks
Wang and Sun published their results on an example of a brain re-
current neural network (RNN) that connects the neocortex and the 
somatic motor cortex. Work done on artificial recurrent neural net-
works is useful to help understand the results that are found. “Here, 
we show a long-range neuronal network, which can be described as 
an innate RNN. It is formed with a self-feedback connectivity in the 
medial prefrontal cortex (mPFC; the hidden unit), which integrates 
inputs from basal lateral amygdala  (BLA) and insular cortex  (IC) 
neurons (the input units) and further innervates the somatic motor 
cortex  (sMO) infragranular-layer-projecting neurons (the output 
units) (Wang 2021).” 

6. Phosphorylation signaling in proteins
Marks, in his textbook Protein Phosphorylation, explores the detail 
of how protein phosphorylation works. He also draws out the many 
ways phosphorylation and neural networks have similarities (Marks 
1996). 

7. Human learning
Benjamin et al., in their book Human Learning: Biology, Brain, and 

Neuroscience, explore a variety of topics in human learning and cog-
nition. They discuss the advances in cognitive neuroscience, brain 
chemistry, and brain imaging. The book contains four sections: (1) 
human learning and cognition, (2) cognitive neuroscience, (3) hu-
man motor learning, and (4) animal model systems. First, the human 
learning section explores the varied approaches to human learning 
and memory. Second, the cognitive neuroscience section discusses 
how thought is implemented in the brain. Third, the human motor 
learning section explores learning skills and the identification of neu-
ral mechanisms for motor learning and control. Fourth, the animal 
model systems section discusses the animal model systems that have 
enabled significant progress in the understanding of the neural mech-
anisms of learning and memory (Benjamin 2008). 

D. Neuromorphic computing

1. Energy-efficient neuromorphic computing

Zheng, in his textbook Learning in Energy-Efficient Neuromorphic 
Computing, explores approaches to energy-efficient neuromorphic 
computing. Starting with a history of neural networks, it discuss-
es the similarities and differences between spiking neural networks 
used in the brain and artificial neural networks that mimic brain neu-
ral networks to a certain level of accuracy, aiming at implementable 
approaches with current microelectronic means. It then explores ap-
proaches in artificial neural networks that have been utilized in ma-
chine learning for decades, how artificial neural networks have been 
implemented in hardware, and efforts to move toward creating more 
realistic spiking neural networks (Zheng 2019).  

2. Neuromorphic computing chip

Davies provides an in-depth explanation of Intel’s Loihi neuromor-
phic processor, which represents a microelectronics package that 
contains a biomimicry realization of neurons in an artificial neural 
network and implements a spiking neural network with a leaky-inte-
grate-and-fire variant model (Davies 2018). 

Intel published this article as a technology brief describing their Loi-
hi 2 neuromorphic computing systems chip, which continues to ma-
ture the capabilities it demonstrated with its earlier Loihi chip. Using 
the same architectural model, Intel has created a network on a chip 
that is closer in some regards to what is done in a biological neural 
network (Intel 2021). 

3. Neuromorphic computing roadmap

Christensen led the team that published an in-depth article assessing 
the current capability of neuromorphic computing, along with pro-
jections for future capability. Subject matter experts from academic 
and research laboratories discuss their research in subarticles in this 
paper. The article highlights the types of research that are required to 
attain the future desired performance. It discusses (1) materials and 
devices, (2) neuromorphic circuits, (3) neuromorphic algorithms, (4) 
applications, and (5) ethics (Christensen 2022). 

4. Neuromorphic computing algorithms and applications

Schuman et al. published a survey article summarizing their assess-
ment of the research and accomplishments in neuromorphic com-
puting algorithms and applications. It compares the Von Neumann 
architecture to the neuromorphic architecture at the operation, or-
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ganization, programming, communication, and timing levels. The 
authors consider neuromorphic computing thoughts around the full 
compute stack levels of materials, devices, circuits, microarchitec-
ture, system architecture, algorithms, and applications, and propose 
much tighter interdependence of these levels for future designs. 
The full compute stack (or design stack) levels in the article are a 
valuable way to organize neuromorphic computing layers and pro-
vide scaffolding to analyze the design and architectural concepts 
(Schuman 2022). 

5. Human brain in silicon

Plebe and Grasso published their assessment of efforts to design a 
computer hardware-inspired brain or a brain in silicon. The authors 
are not convinced that computing based on these principles will re-
place conventional Von Neumann approaches. They mention efforts 
to reverse engineer the brain. In the conclusion section, they state, 
“Until a theoretical framework emerges to capture essential aspects 
of neural plasticity and an appropriate technology able to mimic it 
is devised, the quest for the ‘brain in silicon’ could be severely im-
paired.” (Plebe 2015) 

6. Big data applications of neuromorphic computing

Shrestha et al. published their findings on the increase in big data 
applications and how the capabilities of neuromorphic computing 
can help meet these needs. They explored neuromorphic computing 
models and provided an accessible summary of important approach-
es and comparative details about various developed systems. They 
compared the TrueNorth, SpiNNaker, Loihi, BrainScaleS, Brain-
drop, Dynap-SEL, and Tianjic large-scale neuromorphic implement-
ed systems. The neuromorphic computing design choices they bench-
marked among these systems were (1) neuron model (Classic leaky 
integrate-and-fire (LIF), CUBA LIF, Exponential integrate-and-fire 
(IF)), (2) synapse model (number of weights), (3) implementation 

choice (digital, analog and mixed-signal, and digital with multipro-
cessor system on a chip, SoC), (4) architecture (interconnect crossbar 
size, number of processor cores, memory), and (5) software support-
ed (MATLAB, object-oriented code, Python, PyNN, etc.). Although 
large differences exist in the systems’ implementation, they all uti-
lize a Von Neumann computing construct. Trying to quantize a fixed 
number of neurons into a chip is not how a biological brain operates. 
Brain interconnects take place in a three-dimensional space. Elec-
tronics cannot do this. Crossbar interconnects are inefficient and do 
match the dynamic, programmable, and low-power manner synapses 
connect. Neuron computational engines are embedded in a funda-
mentally different as compared to electronics. Simple, streamlined, 
and optimized neuron computational engines are very different from 
the CPUs found in electronic computing platforms. (Shrestha 2022). 
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