Nutritional Interventions for IBS Patients

Kaitlin Fain
Cedarville University, kfain@cedarville.edu

April Locher
Cedarville University, alocher@cedarville.edu

Follow this and additional works at: http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session

Part of the [Medical Nutrition Commons](http://digitalcommons.cedarville.edu/medical_nutrition_commons)

Recommended Citation
Fain, Kaitlin and Locher, April, "Nutritional Interventions for IBS Patients" (2012). *Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session*. 37.
http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session/37
Nutritional Interventions for IBS Patients
Kaitlin Fain and April Locher
Cedarville University School of Nursing

PATIENT CARE ISSUE
Background & Significance
- IBS is a chronic disease without a clear etiology
- 3-25% of the population of western countries are affected by IBS
- Symptoms include diarrhea, abdominal pain, incomplete stool, and constipation
- Symptoms interfere with daily life and cause feelings of helplessness or hopelessness

EVIDENCE-BASED PRACTICE QUESTION
Question: What diets should IBS patients adhere to in order to decrease symptoms that no diet change would exacerbate?

EBP QUESTION P: Adults 18 years and older diagnosed with IBS
I: Increased Fiber, Decreased Fructose, Probiotics
C: No diet modification
O: Lessen or eradicate reported symptoms of IBS

EVIDENCE
- Decreased Fructose
 - About 1/3 of IBS in the Fructose tolerance study reported improvement of symptoms (pain, belching, indigestion, and diarrhea). Adherence rate was 53% out of 80 patients.
- Increased Fiber
 - Fiber intake was measured using the Food Frequency Questionnaire, and 64% of participants who had an intake of >30mg of fiber reported improvement of symptoms.
- Probiotics
 - Approximately 61% of patients had an improvement on global symptoms when compared to placebo patients.
 - Patients experienced minimal side effects
 - Use of different probiotics had little change in outcome of symptom improvement

RESULTS SYNTHESIS OF EVIDENCE
- Key Words: “IBS”, “diet”, “nursing”, and “nutrition”
- Inclusion: Over age of 18, possess common symptoms of IBS
- Exclusion: Under age of 18, patients with recent abdominal surgeries

METHODS
- 40 articles were found using the key words and 7 fit the inclusion and exclusion criteria. 5 of those articles were included in this review.
 - One Meta-Synthesis
 - Two Randomized controlled trials
 - One comparative study
 - One Systematic review

ACKNOWLEDGEMENTS
We would like to thank Kerri Jackson at Springfield Regional Hospital for participating in the interview portion of this review.

LIMITATIONS
- Need for further research based on:
 - Difficult to identify external factors
 - Evidence was not entirely conclusive
 - Limited number of people participating
 - Assessment criteria was not standardized throughout studies

REFERENCES

PROBiotic EFFECT ON GLOBAL SYMPTOMS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Probiotic</th>
<th>Global improvement in IBS symptoms (%):</th>
<th>Definition of primary outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosier 2010</td>
<td>E. coli</td>
<td>12/14 (86)</td>
<td>Improvement of symptoms</td>
</tr>
<tr>
<td>Codde 2010</td>
<td>Enterococcus faecium</td>
<td>6/12 (50)</td>
<td>Improvement of symptoms based on physician assessment</td>
</tr>
<tr>
<td>Huitema 2013</td>
<td>L. acidophilus</td>
<td>17/18 (94)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Nothhaft 2015</td>
<td>L. plantarum</td>
<td>11/15 (74)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Nakazato 2015</td>
<td>L. casei</td>
<td>3/5 (60)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Kim 2016</td>
<td>VSL#3</td>
<td>4/12 (83)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Karpinska 2016</td>
<td>L. acerbarum G 4 + L. casei</td>
<td>21/23 (91)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Karpinska 2016</td>
<td>E. faecalis B39 + Prop. freudenreichii</td>
<td>21/23 (91)</td>
<td>Absence of symptoms</td>
</tr>
<tr>
<td>Sunnaer 2018</td>
<td>L. plantarum</td>
<td>19/21 (90)</td>
<td>Reduction > 50% of total symptom score</td>
</tr>
<tr>
<td>Vahmedov 2018</td>
<td>E. coli subf. (10^9 CFU/mL)</td>
<td>13/14 (92)</td>
<td>Reducation > 50% of total symptom score</td>
</tr>
<tr>
<td>Vahmedov 2018</td>
<td>E. coli subf. (10^9 CFU/mL)</td>
<td>13/14 (92)</td>
<td>Reducation > 50% of total symptom score</td>
</tr>
<tr>
<td>Vahmedov 2018</td>
<td>E. coli subf. (10^9 CFU/mL)</td>
<td>13/14 (92)</td>
<td>Reducation > 50% of total symptom score</td>
</tr>
<tr>
<td>Tisch 2018</td>
<td>E. coli + Strep. faecalis</td>
<td>10/12 (83)</td>
<td>Reduction > 50% of total symptom score</td>
</tr>
<tr>
<td>Markowski 2018</td>
<td>E. coli + L. acidophilus</td>
<td>10/12 (83)</td>
<td>Reduction > 50% of total symptom score</td>
</tr>
<tr>
<td>Sunnaer 2018</td>
<td>L. paracasei E. coli + L. acidophilus</td>
<td>12/14 (86)</td>
<td>Reduction > 50% of total symptom score</td>
</tr>
<tr>
<td>Sunnaer 2018</td>
<td>L. paracasei E. coli + L. acidophilus</td>
<td>12/14 (86)</td>
<td>Reduction > 50% of total symptom score</td>
</tr>
</tbody>
</table>

PROBIOTIC EFFECT ON GLOBAL SYMPTOMS