A Systematic Review of the Cost-Effectiveness of Chemotherapy Regimens

Nicholas Rudy
Cedarville University, nrudy@cedarville.edu

Hannah Chittenden
Cedarville University, hchitten@cedarville.edu

David Fisher
Cedarville University, dfisher@cedarville.edu

Abigail Moon
Cedarville University, abigailrenemoon@cedarville.edu

Lia G. Hickinbotham
Cedarville University, liahickinbotham@cedarville.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session

Part of the [Pharmacy and Pharmaceutical Sciences Commons](http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session)

Recommended Citation

Rudy, Nicholas; Chittenden, Hannah; Fisher, David; Moon, Abigail; Hickinbotham, Lia G.; Bruce, Emily; Blizard, Eric; Chen, Aleda; and Manion, Chelsea, "A Systematic Review of the Cost-Effectiveness of Chemotherapy Regimens" (2015). *Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session*. 67.
http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session/67
Authors
Nicholas Rudy, Hannah Chittenden, David Fisher, Abigail Moon, Lia G. Hickinbotham, Emily Bruce, Eric Blizzard, Aleda Chen, and Chelsea Manion
A Systematic Review of the Cost-Effectiveness of Chemotherapy Regimens

Chelsea Manion, PharmD, BCPS, Eric Blizzard, Emily Bruce, Hannah Chittenden, David Fisher, Lia Hickinbotham, Abigail Moon, Nicholas Rudy, Aleda Chen, PharmD, MS, PhD
Cedarville University School of Pharmacy

Background
- Approximately 12 million people are diagnosed with cancer each year.1
- In 2010 the cost of cancer treatment was $125 billion, and it is projected to increase to over $158 billion by 2020.2

Estimated New Cancer Cases in the United States in 2015

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphoma</td>
<td>5%</td>
</tr>
<tr>
<td>Myeloma</td>
<td>2%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
<tr>
<td>Oral Cavity and Pharynx</td>
<td>3%</td>
</tr>
<tr>
<td>Digestive System</td>
<td>18%</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>14%</td>
</tr>
<tr>
<td>Genital System</td>
<td>20%</td>
</tr>
<tr>
<td>Breast</td>
<td>14%</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>5%</td>
</tr>
<tr>
<td>Skin</td>
<td>1%</td>
</tr>
</tbody>
</table>

Figure 1

Chemoanalyzing is a recent intervention in medicine and the number of chemotherapy drugs continues to increase. With this increase, there is a need to assess the cost-effectiveness of data to help make clinical decisions. Studies containing cost-analysis data of specific chemotherapies include:
- Cost-Benefit Analyses
- Cost-Effective Analyses
- Cost-Utility Analyses
- Cost-Minimization Analyses

Significance of the Problem
- There are many studies evaluating costs in regards to chemotherapy treatments. However, there is a lack of comprehensive review of the data for clinicians to use to make cost-effective, quality medical decisions.

OBJECTIVE
This systematic review will assess the cost-effectiveness of anticancer medications with a special focus on the quality of care for patients undergoing chemotherapy with the intent to form recommendations that unite evidence-based literature with clinical practice.

LIMITATIONS
- Unexplained heterogeneity or inconsistency of results (including problems with subgroup analyses).
- The design and implementation of available studies suggesting high likelihood of bias.
- Ambiguity of disclosed evidence, including bias, limitations, and threats to validity.
- Imprecision of results, such as wide confidence intervals.
- High probability of publication bias.

SYNTHESIS OF EVIDENCE
Systematic Preferences Based on Pharmacoeconomic Analyses and GRADE Score

<table>
<thead>
<tr>
<th>GRADE Score</th>
<th>Cost Benefit Analysis</th>
<th>Cost-Effective Analysis</th>
<th>Cost-Utility Analysis</th>
<th>Cost-Minimization Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Highest</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>B</td>
<td>High</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>C</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>D</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Lowest</td>
</tr>
</tbody>
</table>

Table 1

PROJECT TIMELINE

- Spring 2016
 - Organize a grading rubric to review articles
 - Establish and conduct initial literature search

- 2016-2017
 - Establish a literature search and acquire final articles

- 2017-2018
 - Develop a clinical reference for providers

FUTURE DIRECTIONS
- Evaluate new studies or literature and incorporate the data into the clinical reference.
- Periodically reevaluate costs associated with chemotherapy treatments.

REFERENCES