The Different Artificial Sweeteners and Their Effects on Endothelial Cell/Blood Vessel Health: Possible Implications for Ringing in the Ear

Morgan R. Bailey
Cedarville University, morganraebailey@cedarville.edu

Jessica A. Ward
Cedarville University, jaward@cedarville.edu

Belinda O. Darkwah
Cedarville University, bodarkwah@cedarville.edu

Brandon L. Spears
Cedarville University, brandonlspears@cedarville.edu

Casey A. Nelson
Cedarville University, caseyanelson@cedarville.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session

Part of the [Nursing Commons](http://digitalcommons.cedarville.edu/nursing_commons), and the [Pharmacy and Pharmaceutical Sciences Commons](http://digitalcommons.cedarville.edu/pharmacy_pharmaceutical_commons)

Recommended Citation

Bailey, Morgan R.; Ward, Jessica A.; Darkwah, Belinda O.; Spears, Brandon L.; Nelson, Casey A.; Shaw Ojeda, Myriam E.; and Rotello, Rocco J., "The Different Artificial Sweeteners and Their Effects on Endothelial Cell/Blood Vessel Health: Possible Implications for Ringing in the Ear" (2015). _Pharmacy and Nursing Student Research and Evidence-Based Medicine Poster Session_. 69.
http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session/69
Authors
Morgan R. Bailey, Jessica A. Ward, Belinda O. Darkwah, Brandon L. Spears, Casey A. Nelson, Myriam E. Shaw Ojeda, and Rocco J. Rotello

This poster session is available at DigitalCommons@Cedarville: http://digitalcommons.cedarville.edu/pharmacy_nursing_poster_session/69
The Different Artificial Sugars and Their Effects on Endothelial Cell/Blood Vessel Health: Possible Implications For Ringing in Ears

Dr. Rocco Rotello, Morgan Bailey, Belinda Darkwah, Casey Nelson, Myriam Shaw Ojeda, Brandon Spears and Jessica Ward

Cedarville University

STATEMENT OF THE PROBLEM

Background

- Every year about 35-50 million American adults experience tinnitus, with symptoms ranging from mild to debilitating, prompting some to seek medical intervention.
- Tinnitus is a noise that persists in the ear when no auditory stimulus is present.
- There is no known cause of tinnitus, making it difficult to treat.
- This study intends to look at the gaps in previous research studies and to shed light on the possible connection between artificial sugars and the prevalence of tinnitus across various age groups.

Significance of the Problem

- There is an insufficient amount of information regarding causes tinnitus. Many speculations exist but none have come to a firm conclusion.
- Millions of people suffer from tinnitus, which demands the scientific community’s efforts to elucidate causes of this condition.
- Our goal is to research age and artificial sugar intake as possible triggers of tinnitus.

HYPOTHESES

H01 = There will be no difference in the prevalence of tinnitus among individuals who consume higher amounts of artificial sweeteners in their diet to those individuals who consume higher amounts of natural sugars in their diet.

H1 = There will be a difference in the prevalence of tinnitus among individuals who consume higher amounts of artificial sweeteners in their diet to those individuals who consume higher amounts of natural sugars in their diet.

H02 = There will be no difference in the prevalence of tinnitus in individuals who sleep well as to those who do not.

H2 = There will be a difference in the prevalence of tinnitus in individuals who sleep well as to those who reported poor sleeping habits.

H03 = There is no difference in the prevalence of tinnitus among people reporting higher stress levels and those who do not.

H3 = People living with high stress will have a higher incidence of tinnitus than those who do not.

H04 = There is no difference in the prevalence of tinnitus among different age groups.

H4 = There is a significant difference in the prevalence of tinnitus among various age groups.

REFERENCES

ACKNOWLEDGEMENTS

We would like to thank Dr. Rotello for his input and expertise on this project and to acknowledge the collaboration among all the audiologists who included their patients.

We would like to give special thanks to Dr. Chen for her guidance and expertise in carrying out this project.

PROPOSED METHODS

Study Design

Survey

- The survey will be cross-sectional, assessing patients in a single moment in time.
- It will be created and administered through Qualtrics with the option of a paper version.
- It will investigate a variety of factors having an effect on ear and vascular health including: sleep, sugar consumption, medications stress and trauma.
- It will also make record of patients’ demographics and their history and severity of tinnitus.
- The cross-sectional survey will be disseminated via audiologists in Ohio’s major cities.

Laboratory

- The laboratory section will utilize one experiment to examine all the sweeteners.
- Ten different sugars and artificial sweeteners will be tested in standardized concentrations in human umbilical vein endothelial cells (HUVECs).
- Sugars: fructose, sucrose, high fructose corn syrup (HFCS), and sucrose.
- Artificial sweeteners: sucralose, aspartame, saccharin, acesulfame and stevia.
- The PathScan® Phospho-Akt1 (Ser473) Sandwich ELISA Kit #7160, run in triplicate, will be used to evaluate the health of the cell.
- This ELISA will quantify the phosphorylation of pAKT—an increased level of which indicates stimulation of the survival pathway.

Data Collection

- Data from the survey will be collected electronically and analyzed with SPSS.
- The lab data will be manually collected by observing the cell lines.

PROPOSED ANALYSES

Survey

- Once collected, surveys will be collated in a spreadsheet then coded into SPSS for analysis.
- Descriptive statistics will be run first.
- Dependent upon the normality of the data collected, we will test for significance using ANOVA/Kruskal-Wallis or an independent t-test/Mann-Whitney as well as post hoc tests.

Laboratory

- The ELISAs will be analyzed by measuring absorbance, which will directly measure the amount of pAKT in the cell. The levels of absorbance will be compared amongst the different sugars.

PROJECT TIMELINE

January 2016: IRB approved

February 2016: February 2017: Survey completed and distributed

March 2016: March 2017: Data collection from surveys and data analysis

LIMITATIONS

- There is no known mechanism for tinnitus development.
- Literature on factors definitively contributing to tinnitus is severely lacking.
- External validity is threatened because data produced will not be generalizable.
- This research is prone to selection bias: ruling out people that have not gone to the doctor for their problems and only looking at cities (excluding rural areas).

FUTURE DIRECTIONS

- If sugars do affect tinnitus, further research could seek to create new clinical approaches to relieve symptoms.
- From studying sugars’ effect on the pathway of cell metabolism, different molecules could be researched to act as antagonists to block harm caused by those substances.