Apr 1st, 11:00 AM - 2:00 PM

GMO vs. Non-GMO: Comparing the Addictiveness of Corn in Rats

Christian A. Carroll
Cedarville University, cacarroll@cedarville.edu

Sara L. Hill
Cedarville University, shill@cedarville.edu

Kelly A. Huston
Cedarville University, kellyhuston@cedarville.edu

Tyler Michael
Cedarville University, tmichael@cedarville.edu

Courtney Noll
Cedarville University, cnoll@cedarville.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.cedarville.edu/research_scholarship_symposium

Part of the Molecular, Genetic, and Biochemical Nutrition Commons, and the Pharmacy and Pharmaceutical Sciences Commons

http://digitalcommons.cedarville.edu/research_scholarship_symposium/2015/poster_presentations/20

This Poster is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in The Research and Scholarship Symposium by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact digitalcommons@cedarville.edu.
Presenters
Christian A. Carroll, Sara L. Hill, Kelly A. Huston, Tyler Michael, Courtney Noll, Melissa J. Beck, and Ginger D. Cameron
GMO vs. Non-GMO:
Comparing the Addictiveness of Corn in Rats
C. Carroll, S. Hill, K. Huston, T. Michael, and C. Noll, Pharm D. Candidates
Melissa Beck, Ph.D.; Ginger Cameron, Ph.D., M.Ed.
Cedarville University School of Pharmacy

STATEMENT OF THE PROBLEM

Background
• Genetically modified (GMO) corn accounted for approximately 88% of all corn consumed in the United States in 2012. The health and safety implications of GMO corn use remain a controversial topic.1
• Addictive behavior has been demonstrated in as many as 47% of adults in the United States. The addictive substance could be anything from tobacco and alcohol to gambling, shopping, or sex. Studies have also demonstrated that eating can be an addictive behavior.2

Significance of the Problem
• Studies comparing the addictiveness of GMO corn to non-GMO corn have not been conducted.
• If GMO corn is found to be more addictive than non-GMO corn, the findings will be strongly implicated in the incidence of obesity and its associated pathologies in the United States.

OBJECTIVES
To compare the addictiveness between GMO corn and non-GMO corn in rats.

HYPOTHESES

Null Hypothesis: There is no statistically significant difference between the level of addictiveness between GMO corn and non-GMO corn in rats.

Alternative Hypothesis: GMO corn products are more addictive than non-GMO corn products in rats.

PROJECT TIMELINE

Obtain IUCUC approval (Spring – Summer 2015)
Data Collection (Fall 2015 – Spring 2016)
Data Analysis (Fall 2016)

PROPOSED METHODS

Study Design
• Controlled experimental physical dependency animal study

Sample
• Sprague-Dawley rats obtained from Harlan Laboratories and randomly assigned to 3 experimental groups
• Six weeks old at time of purchase
• The expected weight of the males will range from 225-275 grams and the weight of the females will range from 150-200 grams.

Data Collection
• Collection of cage food consumption and body weight data will begin during a 28 day treatment period during which each experimental group will be fed a pre-specified percentage of GMO corn (0%, 50%, and 100%).
• Behavioral changes, cage food consumption, and body weight changes for each of the 3 groups will be observed over the course of a 10 day withdrawal period immediately following the initial 28 day period. During this 10 day period, the rats will be fed a non-corn control feed.

Measurement
• Data will be collected during the treatment period to assess body weight and cage food consumption.
• Behavioral changes will be observed in an open field test. Signs of withdrawal are listed in the “Proposed Analysis” section.
• Each rat will be scored based on the withdrawal signs they exhibit.

PROPOSED ANALYSES

The table below lists the withdrawal symptoms to be measured.3 The presence of a symptom will be scored as a 1. The absence of a sign will be scored a 0. The scores will be totaled for each animal. The total scores will be compared using a repeated measures ANOVA test in SPSS.

<table>
<thead>
<tr>
<th>Observations/Symptoms</th>
<th>Weight loss</th>
<th>Tail erection</th>
<th>Increased muscle tone</th>
<th>Plosis</th>
<th>Struggling/vocalizing</th>
<th>Tremors</th>
<th>Twitches</th>
<th>Chattering</th>
<th>Squeaking</th>
<th>Exophthalmos</th>
<th>Piloerection</th>
<th>Driahema</th>
<th>Wedding</th>
<th>Convulsions</th>
<th>Teeth chattering</th>
<th>Wet dog shakes</th>
<th>Ataxia/posture change</th>
</tr>
</thead>
</table>

REFERENCES