Science and Mathematics Faculty Publications

Document Type


Publication Date


Journal Title

Physica D: Nonlinear Phenomena



First Page


Last Page




An effective integration method based on the classical solution of the Jacobi inversion problem, using Kleinian ultra-elliptic functions and Riemann theta functions, is presented for the quasi-periodic two-phase solutions of the focusing cubic nonlinear Schrödinger equation. Each two-phase solution with real quasi-periods forms a two-real-dimensional torus, modulo a circle of complex-phase factors, expressed as a ratio of theta functions associated with the Riemann surface of the invariant spectral curve. The initial conditions of the Dirichlet eigenvalues satisfy reality conditions which are explicitly parametrized by two physically-meaningful real variables: the squared modulus and a scalar multiple of the wavenumber. Simple new formulas for the maximum modulus and the minimum modulus are obtained in terms of the imaginary parts of the branch points of the Riemann surface.


Nonlinear Schrödinger equation; ultra-elliptic solutions; two-phase solutions



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.