•  
  •  
 

Proposal

This work presents mechanisms related to the ice age that followed the worldwide Flood discussed in Genesis. Certain parameters related to material properties and environmental conditions are discussed from modern-day field studies, laboratory tests, and numerical simulations to illustrate connections to the past ice age. The goal is to elucidate possibilities of high ice/snow flow rates (surging) that are observed today and speculate if they could have occurred during the ice age that followed the Flood. Field studies indicate that surging, high rate glacial motion, could be caused by five possible mechanisms: soft deformable stratum, “warm” ice, impurities, steep geometric slopes, and large amounts of basal water. To quantify the effects of these five potential surging-enhancement mechanisms, parametric finite element studies were conducted with the following varying parameters: ice/snow material behavior with its microstructure/inclusion features, ice/snow accumulation rates and boundary conditions, temperature effects of the ice/snow pack, geometry of the glacier, and the ice/ground interfaces. Of all the parameters, the finite element analyses show that the ice/ground interface plays the largest role on surging behavior. Furthermore, the mechanisms that cause surging of a glacier could have induced the rapid motion of the glacier/ice sheet that followed the Flood.

Keywords

Ice age, fracture, deformation, surging, material behavior, finite element simulations

Disclaimer

DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to dc@cedarville.edu.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.