Pharmaceutical Sciences Faculty Publications

Document Type

Article

Publication Date

1-1-2003

Journal Title

Disease markers

ISSN

0278-0240

Volume

19

Issue

4-5

First Page

169

Last Page

183

DOI

10.1155/2004/530647

PubMed ID

15258332

PubMed Central® ID

PMC3850593

Abstract

The advent of systems biology approaches that have stemmed from the sequencing of the human genome has led to the search for new methods to diagnose diseases. While much effort has been focused on the identification of disease-specific biomarkers, recent efforts are underway toward the use of proteomic and metabonomic patterns to indicate disease. We have developed and contrasted the use of both proteomic and metabonomic patterns in urine for the detection of interstitial cystitis (IC). The methodology relies on advanced bioinformatics to scrutinize information contained within mass spectrometry (MS) and high-resolution proton nuclear magnetic resonance (1H-NMR) spectral patterns to distinguish IC-affected from non-affected individuals as well as those suffering from bacterial cystitis (BC). We have applied a novel pattern recognition tool that employs an unsupervised system (self-organizing-type cluster mapping) as a fitness test for a supervised system (a genetic algorithm). With this approach, a training set comprised of mass spectra and 1H-NMR spectra from urine derived from either unaffected individuals or patients with IC is employed so that the most fit combination of relative, normalized intensity features defined at precise m/z or chemical shift values plotted in n-space can reliably distinguish the cohorts used in training. Using this bioinformatic approach, we were able to discriminate spectral patterns associated with IC-affected, BC-affected, and unaffected patients with a success rate of approximately 84%.

Keywords

Bacterial infections, computational biology, cystitis, interstitial, mass spectrometry, nuclear magnetic resonance, biomolecular, proteomics

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.