Pharmaceutical Sciences Faculty Publications

Proteome Analysis of Camptothecin-Treated Cortical Neurons Using Isotope-Coded Affinity Tags

Document Type

Article

Publication Date

6-1-2002

Journal Title

Electrophoresis

ISSN

0173-0835

Volume

23

Issue

11

First Page

1591

Last Page

1598

DOI

10.1002/1522-2683(200206)23:11<1591::AID-ELPS1591>3.0.CO;2-#

PubMed ID

12179976

Abstract

Isotope-coded affinity tags (ICATs) were employed to identify and quantitate changes in protein expression between control and camptothecin-treated mouse cortical neurons. Proteins extracted from control cortical neurons and those treated with camptothecin were labeled with the light and heavy isotopic versions of the ICAT reagents, respectively. ICAT-labeled samples were combined, proteolytically digested, and the derivatized peptides isolated using immobilized avidin chromatography. The peptides thus isolated were analyzed by reversed-phase liquid chromatography coupled directly to either a conventional ion-trap mass spectrometer (IT-MS) or a Fourier transform ion cyclotron resonance mass spectrometer (FTICR). While a majority of the peptide identifications were accomplished using IT-MS, FTICR was used to quantitate the relative abundances of the ICAT-labeled peptides taking advantage of its high resolution, sensitivity, and duty cycle. By using this combination of MS technologies we have thus far identified and quantified the expression of greater than 125 proteins from control and camptothecin-treated mouse cortical neurons. While proteins from most functional classes of proteins were identified, a particularly large percentage of the enzymes involved in glycolysis and the tricarboxylic acid cycle were observed.

Keywords

Antineoplastic agents, phytogenic, camptothecin, cerebral cortex, chromatography, affinity, gene expression profiling, mass spectrometry, neurons, proteins, proteomics

Share

COinS