Engineering and Computer Science Faculty Publications

Document Type

Article

Publication Date

5-2015

Journal Title

Medical Image Analysis

Volume

22

First Page

48

Last Page

62

DOI

http://dx.doi.org/10.1016/j.media.2015.02.002

Abstract

We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system. If improved segmentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC–IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system.

Keywords

Pulmonary nodule, segmentation, computed tomography, Lung Image Database Consortium and Image Database Resource Initiative, LIDC–IDRI

Comments

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.