Pharmaceutical Sciences Faculty Publications

Myogenic Contractility is More Dependent on Myofilament Calcium Sensitization in Term Fetal than Adult Ovine Cerebral Arteries

Document Type

Article

Publication Date

7-1-2007

Journal Title

American Journal of Physiology - Heart and Circulatory Physiology

ISSN

0363-6135

Volume

293

Issue

1

First Page

548

Last Page

556

DOI

http://dx.doi.org/10.1152/ajpheart.00134.2007

PubMed ID

17384133

Abstract

Regulation of cytosolic calcium and myofilament calcium sensitivity varies considerably with postnatal age in cerebral arteries. Because these mechanisms also govern myogenic tone, the present study used graded stretch to examine the hypothesis that myogenic tone is less dependent on calcium influx and more dependent on myofilament calcium sensitization in term fetal compared with adult cerebral arteries. Term fetal and adult posterior communicating cerebral arteries exhibited similar myogenic responses, with peak tensions averaging 24 and 26% of maximum contractile force produced in any given tissue in response to an isotonic Krebs buffer containing 122 mM K+ (Kmax) at optimum stretch ratios (working diameter/unstressed diameter) of 2.19 and 2.23, respectively. Graded stretch increased cytosolic Ca2+ concentration at stretch ratios >2.0 in adult arteries, but increased Ca2+ concentration only at stretch ratios >2.3 in fetal arteries. In permeabilized arteries, myogenic tone peaked at a stretch ratio of 2.1 in both fetal and adult arteries. The fetal %Kmax values at peak myogenic tone were not significantly different at either pCa 7.0 (23%) or pCa 5.5 (25%) but were significantly less at pCa 8.0 (8.4 ± 2.3%). Conversely, adult %Kmax values at peak myogenic tone were significantly less at both pCa 8.0 (10.4 ± 1.8%) and pCa 7.0 (16%) than at pCa 5.5 (27%). The maximal extents of stretch-induced increases in myosin light chain phosphorylation in intact fetal (20%) and adult (17%) arteries were similar. The data demonstrate that the cerebrovascular myogenic response is highly conserved during postnatal maturation but is mediated differently in fetal and adult cerebral arteries.

Keywords

Fura 2, length-tension relations, myosin light chain phosphorylation

Share

COinS