Pharmaceutical Sciences Faculty Publications
Proteome Analysis of DNA Damage-Induced Neuronal Death Using High Throughput Mass Spectrometry
Document Type
Article
Publication Date
6-18-2004
Journal Title
The Journal of Biological Chemistry
ISSN
0021-9258
Volume
279
Issue
25
First Page
26685
Last Page
26697
DOI
10.1074/jbc.M401274200
PubMed ID
15060066
Abstract
Isotope-coded affinity tag reagents and high throughput mass spectrometry were used to quantitate changes in the expression of 150 proteins in mouse wild-type (p53(+/+)) cortical neurons undergoing DNA damage-induced death. Immunological techniques confirmed several of the changes in protein expression, but microarray analysis indicated that many of these changes were not accompanied by altered mRNA expression. Proteome analysis revealed perturbations in mitochondrial function, free radical production, and neuritogenesis that were not observed in p53-deficient neurons. Changes in Tau, cofilin, and other proteins recapitulated abnormalities observed in neurodegenerative states in vivo. Additionally, DNA damage caused a p53-dependent decrease in expression of members of the protein kinase A (PKA) signaling pathway. PKA inhibition promoted death in the absence of DNA damage, revealing a novel mechanism by which endogenous down-regulation of PKA signaling may contribute to p53-dependent neuronal death. These data demonstrate the power of high throughput mass spectrometry for quantitative analysis of the neuronal proteome.
Keywords
Apoptosis, blotting, western, coloring agents, DNA, complementary, down-regulation, free radicals, genes, immunoblotting, immunohistochemistry, mass spectrometry, transgenic, neurons, peptides, phalloidine, proteome, proteomics, RNA, messenger, signal transduction, transfection, tumor suppressor protein p53
Recommended Citation
Johnson, Mark D.; Yu, Li-Rong; Conrads, Thomas P.; Kinoshita, Yoshito; Uo, Takuma; Matthews, Jesse D.; Lee, Sang-Won; Smith, Richard D.; Veenstra, Timothy D.; and Morrison, Richard S., "Proteome Analysis of DNA Damage-Induced Neuronal Death Using High Throughput Mass Spectrometry" (2004). Pharmaceutical Sciences Faculty Publications. 467.
https://digitalcommons.cedarville.edu/pharmaceutical_sciences_publications/467