Department/School of the Primary Author
Engineering and Computer Science
Keywords
CFD (Computational Fluid Dynamics), Drag Reduction, Elliptical Cylinders, Wind Tunnel
DOI
10.15385/jch.2020.5.1.1
Abstract
Drag reduction on an object subject to external flow remains a topic of interest due to a wide range of applications. Previous studies showed that grooves on the surface of a circular cylinder lead to drag reduction, which had thus been applied to save energy in various implementations. In the present study, the effects of longitudinal surface grooves with respect to drag reduction on circular and elliptical cylinders were experimentally explored through resin additive manufacturing and a wind tunnel. Significant drag reduction originated by surface grooves was observed. In conjunction with experimental investigations, numerical analyses were performed with computational fluid dynamics (CFD) to examine the physical causes of the drag reduction. The numerical studies included two- and three-dimensional simulations of flow over circular and elliptical cylinders. The turbulent energy and wake regions of flow were discussed. Key factors in drag reduction were the location of the beginning of turbulence or vortices in the grooves, the boundary layer separation angle, and the size of the turbulent wake region. Through the numerical CFD simulations and experimental results, spanwise surface grooves on elliptical cylinders are verified to reduce drag.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Disclaimer
DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to dc@cedarville.edu.
Rights
© 2020 Michael T. Brocker, David J. McDonell, Drake L. Pensworth, and Joshua J. Swimm. All rights reserved
Recommended Citation
Brocker, Michael T.; McDonell, David J.; Pensworth, Drake L.; and Swimm, Joshua J.
(2020)
"Experimental and Numerical Study of Drag Reduction on Elliptical Cylinders Using Surface Grooves,"
Channels: Where Disciplines Meet: Vol. 5:
No.
1, Article 1.
DOI: 10.15385/jch.2020.5.1.1
Available at:
https://digitalcommons.cedarville.edu/channels/vol5/iss1/1